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Abstract

In this article, we study the space of subgroups of non-amenable general-
ized Baumslag-Solitar groups (GBS groups) of rank d, that is, groups acting
cocompactly on an oriented tree with vertex and edge stabilizers isomorphic to
Z%. Our results generalize the study of Baumslag-Solitar groups, and of GBS
groups of rank 1. We give an explicit description of the perfect kernel of a
non-amenable GBS group G of rank d and show the existence of a partition
of the perfect kernel into a countably infinite set of pieces which are invariant
under the action by conjugation of G, and such that each piece contains a dense
orbit.
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1 Introduction

A generalized Baumslag-Solitar group (GBS group) of rank d is a group that acts co-
compactly on an oriented tree such that the vertex and edge stabilizers are isomorphic
to Z¢. As a consequence of Bass-Serre theory, a generalized Baumslag-Solitar group
is defined by a finite iteration of HNN extensions and amalgamated free products of
Z4 over Z¢4.

GBS groups of rank d > 1 are a generalization of GBS groups of rank 1, which
arise as a natural generalization of Baumslag-Solitar groups BS(m,n) = (b,t | tb"t~! =
b™). Baumslag-Solitar groups were introduced in [BS62] to give the first examples of
two generated finitely presented non-Hopfian groups. GBS groups have been widely
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studied in relation to various properties. In [Levl5|, Levitt computed the minimal
number of generators of a GBS group of rank 1. He studied their automorphism
groups in [Lev07]. The classification up to quasi-isometry of GBS groups of rank 1 is
known (see [WhyO1]) and the classification up to measure equivalence of Baumslag-
Solitar groups has been announced by the authors of [GPTY]. In [LAGZS25|, the
authors determined which GBS groups (of arbitrary rank) are residually finite and
which are LERF.

In this article, we will focus on the set of subgroups Sub(G) of a GBS group G
from a topological point of view. This means that we are more interested in the
topological structure of Sub(G), seen as a closed subset of the Cantor set {0,1}¢,
than in the algebraic properties of the subgroups of GG. Cantor-Bendixson theory (see
[Kec95]) leads to a unique decomposition Sub(G) = (G) u C' into a closed subspace
without isolated points called the perfect kernel of G and a countable set C'. As the
action by conjugation of G induces a homeomorphism of Sub(G), the perfect kernel
is G-invariant. We are interested in the computation of the perfect kernel and the
dynamics induced by the action by conjugation of G on it.

The perfect kernel of any finitely generated abelian group is empty. In [CGP10],
the authors classified the set of subgroups of all countable abelian groups up to
homeomorphism. In [BGK12], the authors proved that the perfect kernel of the
lamplighter group (Z/pZ)":Z (where p is a prime number) is the set of subgroups of
&z Z/pZ".

If G is a finitely generated group, then finite index subgroups are isolated. Thus
the perfect kernel of GG is included in the set of infinite index subgroups of GG. The
authors of [CGLM23] observed that equality holds for the non-abelian finitely gen-
erated free group F, on r generators, and that the action of F, on its perfect kernel
is topologically transitive. Recall that an action of a group G on a topological space
X is topologically transitive if for every non-empty open subsets U,V ¢ X, there
exists g € G such that gU nV # @. In the case where X is Polish, this is equivalent
to the existence of a dense orbit. The authors of [AG24|] extended this result to a
large class of groups acting on trees. They proved that the perfect kernel of a finitely
generated group G with infinitely many ends is also equal to the set of infinite in-
dex subgroups, and that the action by conjugation is topologically transitive on the
perfect kernel as soon as GG does not contain any non-trivial finite normal subgroup.
More generally, they proved that for any finitely generated group G that acts (mini-
mally and irreducibly) on a tree T such that the action of G on T is acylindrical, then
any subgroup H of G satisfying that the quotient graph H\T is infinite belongs to
the perfect kernel of G. In this case, they also proved that the action by conjugation
of G on the closure of the set of subgroups H acting on 7 with infinitely many orbits
of edges is topologically transitive. Recall that an action of a group G on a tree T



is acylindrical if there exists R > 0 such that the stabilizer of any path of length
larger than R is trivial.

GBS groups of rank d are typical examples of groups whose action on their Bass-
Serre tree is not acylindrical, because the stabilizer of any finite subtree of the Bass-
Serre tree is isomorphic to Z¢. The authors of [CGMS25|] (who studied Baumslag-
Solitar groups) and of [Bon24] (who extended some results obtained by the aforemen-
tioned authors to GBS groups of rank 1) observed that this leads to very different
dynamics for the action by conjugation of a non-amenable GBS group G of rank 1
on its perfect kernel. More precisely, they showed that IC(G) = Sub[e)(G) if and
only if GG is not unimodular. Recall that one characterization of unimodularity for
a GBS group of rank 1 is the existence of an infinite cyclic normal subgroup (see
[LevOT7][Section 2] for instance). They also described a countably infinite G-invariant
partition of C(G), such that G acts topologically transitively on each piece. One
piece is closed and all the other ones are open (and also closed if and only if G is
unimodular). To obtain this decomposition, the authors of [CGMS25| introduced the
phenotype, which is a G-invariant function Sub(G) - N* U {oo}, and which was
generalized in [Bon24]. This function is computable and encodes the decomposition
of the perfect kernel.

In this article, we will extend these results to non-amenable GBS groups of an
arbitrary rank d, that is to say, those which are neither isomorphic to Z[A, A~1](Z9) x
Z for some A € My(Z)nGLy(Q) (where Z[A, A~1](Z9) is the subgroup of Q¢ defined by
{Afu,k e Z,ueZ?} and Z acts on Z[A, A~1](Z%) by multiplication by A) nor to any
amalgamated free product Z% 34 Z% where both injections are defined by matrices of
determinant +2 (c¢f. Proposition [3.18). More precisely, we prove the following result

(¢f. Theorem [5.2)):

Theorem 1.1. Let G be a non-amenable GBS group of rank d defined by a reduced
graph of groups 7 and let T be the Bass-Serre tree of 7. Then

K(G)={H <G| H\T is infinite}.

We also give some sufficient conditions that depend on the modular homomor-
phism (see Section for the perfect kernel to be equal to Sub[e](G).

We also obtain a generalization of the main results of [CGMS25] and [Bon24] (cf.
Equation [6.4] and Theorem [6.5] if G is not a semidirect product, and Theorem [6.15]

otherwize):

Theorem 1.2. Let G be a non-amenable GBS group of rank d. There exists a
countably infinite G-invariant partition of the perfect kernel of G into pieces that
contain dense orbits.



This implies in particular that the action is topologically transitive on each piece.

We also investigate the topology of the pieces that appear in these decompositions,
which is slightly different depending on whether G is a semidirect product Z? x F,
(¢f. Theorem or not (cf. Proposition . As some of these pieces need not be
Polish, proving high transitivity does not suffice to get the existence of a dense orbit
in each piece.

The paper is organized as follows. Given a graph of groups ¢ of fundamental
group G, we extend the notion of #-preactions and of #-graphs in Section [3.1]
They were introduced in [FLMMS22| in the case where G is an amalgamated free
product or an HNN-extension (i.e. if 7 consists of a single edge), and adapted in
[CGMS25] in the case of Baumslag-Solitar groups and in [Bon24] in the case of GBS
groups of rank 1. In Section [f, we prove Theorem [I.1} Finally, in Section [0 we show
the existence of the decomposition of Theorem [I.2] and investigate the topology of
the pieces. This gives rise to a natural generalization of the phenotype defined in
[CGMS25] and in [Bon24]. However, we do not know if this decomposition is still
computable in this wider context, and we do not know if our arguments can be used to
prove high topological transitivity results as in for Baumslag-Solitar groups
and in [Bon24] for GBS groups of rank 1.
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2 Preliminaries and notations

We denote by P the set of prime numbers in N. For every integer N and p € P,
we denote by |N|, the p-adic valuation of N, that is, the largest n € N such that p»
divides N. By "countable” we mean finite or in bijection with N. Given a group
G, we denote by Sub(G) the set of subgroups of G and by Sub[.)(G) the subset
of Sub(G) that consists of infinite index subgroups. If H < G is a subgroup, we
denote by [H]¢ the G-conjugacy class of H. For any d € N*, we denote by L£(Z%)
the set of lattices of Z%, i.e. the set of finite index subgroups of Z%. If K is a field
and M € My(K), one denotes by Speck(M) the spectrum of M in K, i.e. the set of
elements A € K such that det(M - AI;) = 0.

2.1 Graphs

We refer to [Bon24|, Section 2 for the notations and definitions around graphs and
Schreier graphs. We add the following terminology: given a graph 7, an element of
E(H) x {s,t} is called an half-edge. The inferior half-edge of e € £(J7) is (e,s)
and its superior half-edge is (e,t). Given a graph J# and a spanning tree .7 of JZ,
for any vertices u,v € V(7), we denote by [u,v]s the unique edge path in .7 that
connects u to v.

2.2 Space of subgroups of a countable group

Let G be an infinite countable group. Endowed with the Chabauty topology, the
set of subgroups Sub(G) of G is a closed subspace of the Cantor set {0,1}¢. An
explicit basis of open sets is given by the following clopen sets:

V(O,I)={H eSub(G),HnO=@ and IcH}

for any finite subsets O, I ¢ G.

We will make use of the following lemma, that describes the topology of some
subsets of Sub(G).



Lemma 2.1. Let G be a countable group and let Gy be any subgroup of G. Then, for
any subgroup Hy < Gy, the set

{HSG|HOG0:H0}

is closed in Sub(G). If moreover the group Hy is finitely generated and has finite
index in Gq, then it is also open.

Proof. One has
{H<G|HnGy=Hy} = N {H<G|heH and g¢H}

(h,g)eHoxGo~Hp

which is closed as an intersection of basic clopen subsets of Sub(G).
If Hy is finitely generated and has finite index in Gy, let {hq,...,h,} be a finite
generating set of Hy and let us write Go/Hy = {Hy, g1 Ho, ..., gm Ho }. We then have

{H<G|HnGy=Hy} = N {H<G|hieH and g;¢ H}

(@.5)e[1,n]x[1,m]

which is open as a finite intersection of basic clopen sets. O

Applying Cantor-Bendixson Theorem (see [Kec95, Section 6, Chapter 1] for in-
stance) to the Polish space Sub(G) leads to a unique decomposition Sub(G) = K'||C
where C' is countable and K is a closed subspace of Sub(G) without isolated points.
The set K is called the perfect kernel of G and denoted by IC(G). It is the largest
closed subset of Sub(G) without isolated points, or equivalently, the set of subgroups
all of whose neighborhoods are uncountable.

If GG is finitely generated, then finite index subgroups are isolated. In particular,
we get the following inclusion (G) € Sub[e](G). The converse inclusion is true
in the case of finitely generated free groups (see [CGLM23|[Proposition 2.1] and
[AG24][Corollary 5.17]):

Proposition 2.2. Let F, be the free group on r generators (2<r <oo). Then
o if r <oo, then K(F,) = Sub[ee](F,);
o K(Fs)=Sub(Fu).
Moreover, there exists a dense orbit for the action by conjugation of F,. on KC(F,).

Remark 2.3. The key point of the proof of Proposition is the identification of
subgroups of F, = ((a;)e,)) With coverings of the bouquet B, of r circles (which
are exactly the Schreier graphs of subgroups of F, with respect to the generating set
{a;,i € [1,7]}). More precisely, this relies on the two following facts. Let B be a
(possibly infinite) graph. Then:



e for every covering £ — B and every connected finite subgraph K ¢ E, there
exists a covering p : B/ — B whose degree is infinite and such that E’ contains a
subgraph K’ which is isomorphic to K as a labeled graph (this allows to obtain
the aforementioned explicit description of the perfect kernel);

e for every coverings E; - B (i € N), given any connected finite subgraph K; ¢ E;
(for every ¢ € N), there exists a covering p : E - B whose degree is infinite
and such that E contains disjoint subgraphs (K);n such that K! and K; are
isomorphic as labeled graphs for every 7 € N (this allows to build a dense orbit).

This point of view will be useful in the study of the action by conjugation of a
semidirect product Z¢ x F,. on its perfect kernel (¢f. Section .

2.3 Graphs of groups

In this section, we recall the fundamentals of Bass-Serre theory. We refer to [Ser83] for
more details. A graph of groups is an oriented graph 7 equipped with a collection
of vertex groups G,,v € V (), a collection of edge groups G.,e € £ () such
that G. = Gz for every edge e € £ () and, for u € {s,t}, injective homomorphisms
Leqa t Ge = Gy(ey such that i, = 1z for every edge e.

The fundamental group of a graph of groups 7 is defined by the following
presentation: let us fix a spanning tree 7 in J. Denote by {t.,e € £()} a
generating set of the free group Fig( ) of rank |€ ()| and define

G = (*UGV(%)GU * F\E(%”ﬂ) / <<(t;11'e,s(e)(x)te[/e,t(e)(x)_l)(ew)eg(%p)xce ) (tetE)eEE(%)a (te)eeg(ﬂ) >>
(2.4)
The isomorphism class of the group G defined as above does not depend on the choice
of the spanning tree (c¢f. Proposition 20 in [Ser83|, Section 5.1).
There exists a (unique up to unique isomorphism) oriented tree 7, called Bass-
Serre tree of 7 on which G acts without inversion with quotient .7#° and such
that there exist sections V () - V(T) and € () — £(T) (which we denote by
v — 0 and e — € respectively) of the projection 7 : T — J# satisfying the following
conditions:

Stab(v) = G, Yv e V(). (2.5)
Stab(€é) = G. Ve e E(H). (2.6)
More precisely (cf. [Ser83|[Section 5.3]), the set of vertices of T is

V(T)= || G/G,,

veV ()



and its set of edges is
ETM)= || G/G..
ecE(H)
Conversely, any group action G ~ 7T without inversion is obtained by this con-
struction (cf. [Ser83|, Section 5]).

3 J¢-preactions and J7-graphs

In this section we generalize the interpretation of graphs of subgroups as ”blown
up and shrunk” Schreier graphs obtained for HNN-extensions or amalgamated free
products in [FLMMS22], for Baumslag-Solitar groups in [CGMS25] and for rank 1
GBS groups in [Bon24].

This gives us a tool to approximate some subgroups of iterated HNN-extensions
and amalgamated free products, that we will apply to GBS groups.

3.1 General setting

In this section, we fix a graph of groups . endowed with a spanning tree .7 and
we denote by G the fundamental group of 7, defined by Presentation . To
any subgroup of G, we will associate a ”.77-graph”, which is a labelled graph that
satisfy some combinatorial conditions. It will reduce the problem of approximating
a subgroup of G to the one of approximating its .#-graphs.

First, we introduce the notion of JZ-preaction of GG. Informally, this is a col-
lection of partial bijections (each of these corresponding to an edge generator or an
element of a vertex group in the presentation ([2.4])) such that the partial bijections
associated to generators of a vertex group G, define a genuine G,-action. Let us
make this definition more precise:

Definition 3.1. A J#-preaction on a countable set X is a collection of (possibly
non-transitive) right G,-actions «, defined on subsets D, of X for every v € V()
(i.e. morphisms «, : G, » Sym(D,)) and of partial bijections . for every e ¢ 7
satisfying the following conditions:

o for every e E(H)\NE(T),

- dom(/Be) iS O[S(e)(L@s(Ge))—Stable;
— 1g(fBe) is ag(e)(Let(Ge))-stable;

o for every e € £(.7), for every g € G. and x € Dg(c) N Dy(c), one has
T - Os(e) (Le,S(g)) =T Qy(e) (Le,t(g)) )

8



o forevery e e E(J)NE(T), for every g € G, and & € dom(3.)NDg(ynS;* (Dt(e)),
one has

T - Qg(e) (Le,s(g)) : Be =X Be * Og(e) (Le,t(g)) ;
e for every vertices v, w € V(), for every vertex u € [v,w], one has

D, D, € Dy:

e for every e E(H)NE(T) and v e V(H), for every u € [v,8(e)], one has

D,ndom(g,) € D,.

To alleviate notations, given a .7#-preaction « defined on a countable set X, we
will simply denote by x - g the element x - «,(g) if € D,, and by x - . the element
x-S if x € dom(p,).

Informally, the .77-graph of a preaction « is the Schreier graph of « all of whose
G-orbits are shrunk to vertices labeled by the corresponding G,-actions for every
vertex group G,. As the isomorphism class of a transitive right action of a countable
group on a countable set X is uniquely determined by the stabilizer of any point of
X, these labels will be G,-conjugacy classes of subgroups of G,. For every vertex
x -Gy, ' Gy, we put an edge labeled e € £() between = - G, and 2z’ - G, iff
(s(e),t(e)) = (v,w), z € dom(t.) and

e citheree 7 and x-G, na' -Gy, # &;
eore¢ 7 and zt.-G,nz' -Gy, + .

Because of the fact that vertex groups need not be commutative for the moment,
we also add a label to the inferior and the superior half-edge in order to remember
?where” do the two orbits z - G, and z'-G,, (or zt.-G, and 2’ - G,,) intersect.

We now give the formal definition:

Definition 3.2. Let a be a #7-preaction of G on a countable set X. One defines
the JZ-graph G of « as follows :

e its vertex set is the set of G,-orbits for every v e V(5):

V(G)= || DG,

veV ()



e its edge set is £(G) = £E7(G) uE~(G) where

E°(G)= | (Dse) nDyey) [tes(Ge)| ] | | (Dsey Nt (Diey)) [tes(Ge)

eeEH(T) eeET(HIWNE(T)

and

g_(g) = |_| (Ds(e) th(e))/Le,t(Ge)l_l |_I (Dt(e) Nie (Ds(e)))/Le,t(Ge)
ecEH(T) ecEH(HIWNE(T)

with

— for every e € £+(7), for every x € Dg(ey N Dy(ey:
s (2tes(Ge)) = 2Gye)

and
t (me,t(Ge)) = l‘Gt(e)

Moreover
xLe,s(Ge) = xbe,t(Ge);

— for every e € E+(H) N E(T), for every x € Doy nt;1 (Dy(e)):
s (2tes(Ge)) = 2Gye)

and

t (21e4(Ge)) = 2tGye)

Moreover
xLe,s(Ge) = xtebe,t(Ge);

e cach vertex =G, is labeled ([Stabg, (2)]a,,v);

e for every vertex x(,, we fix an identification between xG, and the quotient
set Stabg, (z)\G, (in an equivariant way). Each edge (Stabg,(2)g)tes(Ge) is
labeled e and its inferior half-edge is labeled (Stabg, (2)g)t.s(G.); in particular
(applying this last condition to €), it is labeled (Stabg, (z)g)tes(Ge) at its
target.

Remark 3.3. In Item [3.2] the data of [Stabg, (2)]¢, is equivalent to the data of the
G,-action Stabg, (2)\G, = G,, or equivalently, of the G, -action on xG,,.

10



Figure 1: Graph of groups 77 defining an HNN-extension

Example 3.4. Let us consider the HNN-extension GG of some group G, over a group
G, defined by the two inclusions ¢ : G, - G, and j : G, - G,. It is the fundamental
group of the graph of groups defined in Figure

The group G inherits the following presentation

G = (G, te | 1.1 i(g)te = 5(9))- (3.5)

Let us consider a #-preaction that consists of two G,-orbits = -G, v - G,, and
such that . sends two points of z -G, (say z,z’) that lie in two different i(G.)-orbits
to two other points in y-G,, (say y,%’) that lie in two different j(G,)-orbits (see Figure
3.

The sZ-graph of the above action consists of

e two vertices, that correspond to the two G,-orbits;

e two edges between those vertices, that correspond to the i(G.), j(G.)-orbits.

This graph is represented in Figure [3]
Notice that the chosen identifications required in Item send x (resp. y) to the
coset Stabg, (2)1 (resp. Stabg, (y)1) of Stabg, (2)\G, (resp. Stabg, (y)\G.).

Similarly, one defines the .77-graph of a subgroup H using the correpondence
between subgroups and right actions:

Definition 3.6. The JZ-graph of a subgroup H of G is the J#-graph of the right
action of G on H\G.

Remark 3.7. As observed in [Bon24] in the case of infinite cyclic vertex and edge
groups, the data of the graph of groups of H is equivalent to its .5#-graph: recall
that the set of vertices of the Bass-Serre tree T associated to a graph of groups 77 of
fundamental group G is yep(n) G/Gy, and its set of edges is |eeg( ) G/Ge. Thus,
for any subgroup H of G, the set of vertices (resp. of edges) of H\T is exactly

LI H\(G/G,) = L] (H\G)/G,

veV () veV(H)

11



$°Gv y'Gv

Figure 2: Schreier graph of a ##-preaction (here ¢,¢' € G, and g, € G.)

(resp. Ueeery H\(G[Ge) = Uees()(H\G)/G.)), which is exactly the set of vertices
(resp. of edges) of the J#-graph of H (taking the quotient H\G amount to tak-
ing the Schreier graph of H, then taking the disjoint union over the vertices of 7
amounts to ”blow it up”, and taking the quotient by every vertex (resp. edge) group
amounts to shrinking the orbits of vertex groups (resp. edge groups), which amounts
to constructing the vertices (resp. edges) of the s-graph of H).

Now we want to define an abstract notion of #-graph. To achieve this, we first
prove the following lemma, which gives a combinatorial condition on the labels of the
vertices of the 7#-graph of a preaction.

Lemma 3.8. Let G be the € -graph of a 7 -preaction a defined on a set Xy. For ev-
ery B € £(G), denoting by e the label of E, by ([Ao]a,.,.s(€)) (resp. ([Aile,.,.t(€)))

12



Figure 3: J¢-graph of the JZ-preaction represented in Figure

the label of s(E) (resp. t(E)), by Aogotes(Ge) (resp. A1gites(G.)) the label of the
inferior (resp. superior) half-edge of E, one has

[Lg,ls (961/\090)](;6 = [L;}; (gl_lAlgl)]Ge :

te ife¢E(T)

id otherwise By construction,

Proof. For every e € (), let us define s, = {
there exist z,y € Xy and ¢, ¢’ € G, such that

e Stabg,, (7) = Ag;

e Staba,, (y) = Au;

® - gotes(9')Se =Y+ gites(9).

Hence, denoting by X =z - gotes(g) and Y =y - g1ic+(g’), one has Y = X5, thus

Stabg,., (Y) neee(Ge) = Stab,, (c.)(Y)
= Stabg1, s (Xse)
=s;! (Stabbe’s(ge)(X)) Se
=s.t (Stabgs(e> (X)n LeVS(Ge)) Se
= let (L;ls (Stabgs(e) (X)))

so, taking the preimage under ¢ ,we get

L;ls (StabGS(e) (X)) = L;}c (StabGt(e) (Y))

13



which amounts to saying that

gy (961/\090) 9=9""14 (QIIAlgl) g
which proves the statement. O
Using this lemma, one can extend the notion of a Z-graph as follows:
Definition 3.9. A JZ-graph G is a labeled graph satisfying the following conditions:

e cvery vertex is labeled ([A]g,,v) for some v € V() and some subgroup A of
Gy

e cvery edge F € £(G) is labeled by an edge e € () such that s(F) is labeled
(C,s(e)) (for some Gg(.y-conjugacy class C' of subgroups of Gg()) and t(£) is
labeled (C”,t(e)) (for some Gy(.y-conjugacy class C” of subgroups of Gy();

e the inferior half-edge of an edge labeled e with source labeled ([A]g,,v) is
labeled by an element of A\G,/t.s(G.);

e cvery edge labeled e whose inferior half-edge is labeled Aggotes(G.) (with Ag <
Gy(e)) and whose superior half-edge is labeled Ajgiic¢(Ge) (with Ay < Gye)
satisfies

[ex (95" Mogo)],,. = [eet (91" Mgn) ],

e inferior (resp. superior) half-edges of different edges labeled e (for some e €
E(H)) sharing the same source (resp. target) can’t share the same label.

Notice that a J#-graph is the JZ-graph of a subgroup H < G if and only if every
vertex labeled ([A]g,,v) has exactly |[A\G,/t.s(G.)| outgoing edges labeled e for
every edge e € £(H) satisfying s(e) = v (we call such G a saturated J#-graph). In
the formalism of Bass, who introduced the right notion of coverings in the setting of
graphs of groups in [Bas93], a s#-graph G is the base space of an immersion G - A
of the graph of groups 7. This immersion is a covering if and only if G is saturated,
that is to say, G is the JZ-graph of a subgroup of G.

The three following lemmas (3.11} [3.10] and [3.14)) give rise to a useful tool to ap-
proximate subgroups of G. We show that, under some conditions, an approximation
of the JZ-graph of a subgroup gives rise to an approximation of the subgroup itself.
The proofs of these are very similar to the ones given in the case of GBS groups of
rank 1 in [Bon24] (Lemma 3.3, Lemma 3.4 and Lemma 3.5). For the convenience of
the reader, we adapt the main ingredients of the proofs to our wider setting.
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Lemma 3.10. Let F be a finite 7€ -graph. There exists a F€-preaction whose F€ -
graph is F.

Lemma 3.11. Let (a;)ien be a collection of S -preactions whose F-graphs (G;)ien
are contained in a saturated F€-graph G as pairwise disjoint subgraphs such that the
quotient G/ (Lien Gi) is a tree. There exists a G-action o whose F€-graph is G and
that extends o for every i € N.

The proofs of Lemma and Lemma rely on straightforward inductions
based on the following proposition:

Proposition 3.12. Let ag be a F€-preaction defined on a countable set Xo whose
FC-graph Gy is contained in a € -graph G such that:

o V(G)=V(G):;
e £(G)=E(Go) u{E} for some edge E such that s(E),t(E) € V(Gy).

Then, there ezists a F€-preaction o whose F-graph is G. Moreover, if s(E) and
t(E) belong to two different connected components of Gy (that is two say, ap = ag Uy
for some subpreactions a; and as, and s(E) (resp. t(E)) corresponds to a vertex
orbit for oy (resp. t(E)), the constructed preaction o extends both oy and asg.

Proof. We adapt Constructions A and B defined in [Bon24, Section 3]. Let e be the
label of E and let us denote by (V1,V3) = (s(E),t(E)), and by (v1,v2) = (s(e), t(e)).
Let ([Ai]a,,,vi) be the label of V; (for i € {1,2}) and let Ay g1t s(Ge) and Aggoteo(Ge)
be the label of the inferior half-edge and of the superior half-edge of E, respectively.
One has [1;5(97" Mg1)]e. = [to4 (95 Aag2)]a., , i.e. there exists h € G, such that

tes(gr Mrgr) = W (92" Aago) b (3.13)

We distinguish two cases:

Construction A : If e ¢ £(.7), then there exist 1,25 € Xy such that:
e 1; edom(G,,) forie{1,2};
e Stabg, () =A; for i€ {1,2};
e r-¢g; ¢ dom(t.) and x5 - go ¢ TE(1,).
We extend ¢, and ¢! on a subset of X := X by defining, for every g € G.:
(21 91(tes(9))) - te = 22+ gates(hgh™),
which is well-defined by Equation [3.13] The resulting 7-preaction is suitable.
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Construction B : If e € £(.7), then there exist x1, x5 € Xy such that:
e 1; e dom(G,,) for ie{1,2};
e Stabg, (7;) = A; for i€ {1,2};
e ;- ¢dom(G,,) and x5 - gy ¢ dom(G,,).

We let
X = Xo/ (351 “Gites(g) ~ Ta - gater(hgh™) Vg e Ge)

and we let a be the J7-preaction induced by a on X. As previously, it is well-defined
by Equation By construction, the J-graph of « is G. O

Finally we explain how to saturate a .7/-graph in our new setting.

Lemma 3.14. For every (non-saturated) 7 -graph G, there exists a saturated -
graph G that contains G and such that the quotient G/G is an infinite forest.

Proof. We argue by induction using the following construction: if V' is a non-saturated
vertex labeled ([Ao]g,,v), whose non-saturation is witnessed by

e an edge e € £() with source v;

e an element gy € G, such that there is no inferior half-edge labeled Aggotes(Ge)
with source V

then, denoting by w = t(e), one defines

Ay = et (to5(90" Nogo))

and one builds a new vertex W labeled ([A]g,,w) and a new edge E labeled e with
source V' and target W such that

e the inferior half-edge (E,s) is labeled Aggotes(Ge);
e the superior half-edge (F,t) is labeled Ajt.¢(G.).
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3.2 Generalized Baumslag-Solitar groups

In this section, we will apply the tools we introduced in the previous section to GBS
groups.

A GBS group of rank d is the fundamental group of a finite graph of groups whose
vertex and edge stabilizers are isomorphic to Z¢. As any injective morphism Z¢ — Z¢
is represented by an element of M,(Z) n GL4(Q), a GBS group can be represented
by an oriented graph ¢ endowed with a function which associates an integer matrix
whose determinant is non-zero to each half-edge:

M : E(H)x{s,t} - Ms(Z)nGL4(Q)
(6,11) = Me,u

and that satisfies Mz¢ = M. s for every e € (). Up to shrinking some edges, we
can assume that the graph % is reduced, that is to say, the only edges e € V()
one of whose labels is in GL4(Z) are loops.

Given a GBS group G defined by a graph of groups ¢, let us denote by T
its Bass-Serre tree and let us define the modular homomorphism as follows (cf.
[LAGZS25]): fix a vertex v € V(T). Observe that for any g € G, the group G4, nG,
has finite index in G, hence belongs to the abstract commensurator of GG,. Define

G,nG,1, = Gy,nGyg,

b g N ghg‘lg . As G,
is isomorphic to Z¢, the morphism Ag) can be identified with a morphism Ag) G~
GL4(Q). The definition of the modular homomorphism does not depend on the choice
of the vertex v up to conjugation by an element of GL4(Q). Practically, the image of
the modular homomorphism (based at some vertex v) is generated by the matrices
B,A;. .. BiA[! for every edge path ey, ..., e, labeled (Aq,By), ... ,(A,,B,) and based
at v. In particular, the modular homomorphism of a GBS group defined by a tree of
groups is trivial. A GBS group G of rank d is unimodular if Im(det oAg) € {1,-1}.

Ag})( g) as the equivalence class of the morphism

Example 3.15. Let us consider the GBS of rank 2 defined in Figure
Let us chose the edge f as a spanning tree in the graph represented in Figure [4]
Then, the presentation of GG associated to this choice is the following:

G 2<xv7yv7xwaywate ’ [xvayv] = [xw:yw] = 17
vy = wyn, vy = vy

to (@Y Dte = 2y o bt = Syl

The modular homomorphism is trivial on the vertex generators x,, ¥, Tw, Y and
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Figure 4: A graph of GBS
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In the case where the vertex stabilizers are abelian, the definition of a J#-graph
simplifies as follows. A JZ-graph G is then a labeled graph satisfying the following
conditions:

1. every vertex is labeled (A,v) for some v € V() and some subgroup A of G,;

2. every edge F € £(G) is labeled e for some e € £(#) such that s(F) is labeled
(Ao,s(e)) (for some Ay < Gg(ey) and t(£) is labeled (Aq,t(e)) (for some A; <
(;t(e));

3. every edge labeled e whose source (resp. target) is labeled (Ag,s(e)) (resp.
(A1,t(e))) satisfies
tes (Ro) = 1k (A1)

4. every vertex labeled (A,v) has at most [A\Gy/tes(Ge)| outgoing edges labeled
e (with s(e) = v) and at most |[A\Gy/tet(Ge)| incoming edges labeled e (with
t(e) =v).

Observe that a J7-graph is the JZ-graph of a subgroup iff equality holds for every
vertex and edge in the last item.

Hence for a GBS group of rank d the definition of a J#-graph becomes the fol-
lowing;:
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Definition 3.16. Let d > 1 and let 7 be a finite graph of groups all of whose vertex
and edge groups are isomorphic to Z4. A #-graph is a labeled graph that satisfies
the three following conditions:

1. every vertex is labeled (A,v) for some v € V() and some subgroup A of Z¢;

2. every edge F € £(G) is labeled e for some e € £(#) such that s(F) is labeled
(Ao,s(e)) (for some Ay < Gg(ey) and t(E) is labeled (Aq,t(e)) (for some A <
Gi(e)):

3. Transfer Equation every edge labeled e whose source (resp. target) is labeled
(Ag,s(e)) (resp. (A1,t(e))) satisfies

(M_iAg) nZ% = (M_3A1) nZ%

4. every vertex labeled (A,v) has at most |Z4/(A, M, sZ¢)| incident edges labeled
e (with s(e) = v) and at most [Z¢/(A, M, +Z%)| incident edges labeled e (with
t(e) = v);

It is saturated iff equality holds for vertex and edge in the last item.

Example 3.17. Let A = g g and B = 1 le . Let us defined the GBS group G,

as the fundamental group 7(.#%) of following graph of groups defined in Figure [j|

AT

Figure 5: The graph of groups 73.

The labeled graph represented in Figure @ is a (non-saturated) J#)-graph.
We will focus on non-amenable GBS groups. They are characterized by the fol-
lowing proposition:

Proposition 3.18. Let G be a GBS group defined by a reduced graph of groups .
Then G is amenable iff H is a single loop one of whose labels is in GLy(Z), or a
single edge e with s(e) # t(e) both of whose labels have determinant +2.

19



Figure 6: An example of a J#-graph.

Proof. Let us assume that J# consists of a single loop e labeled (A,B) with B €
GL4(Z). Denoting by M := AB-!, the group G is isomorphic to Z[M,M~1]Z4 x Z,
where Z acts on Z[M, M~1]Z¢ multiplication by M. As an extension of an abelian
group by an abelian group, G is amenable.

Now let us assume that 57 consists of an edge e which is not a loop such that
the labels A and B of e have determinant £2. The Bass-Serre tree T of JZ is a
bi-infinite line on which G acts with kernel N isomorphic to Z¢. The action of G/N
on 7 has also a single orbit of edges, the stabilizer of any edge is trivial, and, as
A and B have determinant +2, the stabilizer of any vertex is isomorphic to Z/2Z.
Thus, Bass-Serre theory tells us that G/N is isomorphic to (Z/2Z) * (Z/2Z), which
is virtually isomorphic to Z. Hence, N and G/N are amenable, so G is amenable.

Conversely, let us assume that 7 is neither a single loop one of whose labels is in
GLy(Z), nor a single edge e with s(e) # t(e) both of whose labels have determinant
+2. Then the action of GG on its Bass-Serre tree T is of general type, thus GG contains
a free group on two generators. In particular, G' is non-amenable. O]

4 An equivalence relation on Sub(Z¢)

In this section, we assume that G is a non-amenable GBS group which is not the
fundamental group of a graph of groups defined by a single vertex and a collection of
loops labeled by invertible integer matrices. In other words, GG is neither amenable
nor isomorphic to a semidirect product Z¢ x F,.

First, we introduce an equivalence relation that will give the decomposition of
Theorem [L.2]

Definition 4.1. Let Ay and A; be two subgroups of Z¢. We say that Ag and A;
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are J¢-equivalent with respect to a vertex v € V() (denoted w.r.t. v) if there
exists a connected J#-graph that contains two vertices labeled (Ag,v) and (Aq,v),
respectively.

Lemma 4.2. Suppose that there exists a € -path Eq, ..., B, that connects two vertices
labeled (Ao, v) and (A1, w), respectively. Then, for every edges e, f € E(FH) satisfying
s(e) =v and t(f) =w, there exists a F-path of type e, ...,e1,....e., ..., f that connects
two vertices labeled (Ag,v) and (A1, w) and that contains E1, ..., E, as a subpath.

Proof. Let Ey, ..., E,. be areduced s#-path labeled ey, ..., e, (with e; € £(J) for every
i €[1,r]) such that

e s(FEy) is labeled (Ag,v);
e t(E,) is labeled (A, w).

We first prove that there exists a reduced 7Z-path labeled e, ..., e1, ..., e, that connects
a vertex labeled (Ag,v) to a vertex labeled (A, w), and that contains Ei, ..., E,. as a
subpath. If e = eq, then the edge path E, ..., E, is suitable.

Otherwise, let us denote by (A,B) = (M¢s, Mct) and v' = t(e). Let us define

Ay =B(A Ay nZ%).
By construction, (Ag,v) and (Aj,v") satisfy the Transfer Equation
A A nZ?=B'A;nZ%

Hence there exists a .7Z-graph which consist of a single edge Ejj labeled e connecting
a vertex Vp labeled (Ag,v) to a vertex V; labeled (Af,v’).

Case 1: Let us first assume that |det(B)| > 2. As |det(B)| > 2 and Aj € BZ4,
one has
|24/(BZ¢, Ay)| = |det(B)| > 2.

Hence the labeled graph which consists of
e the edge Ej;
e an edge F/ labeled € connecting V; to a vertex V3 labeled (A, v)

is a J-graph of type e, e that connects a vertex labeled (Ag,v) to a vertex labeled
(Ao, v). Finally, as e # e; by assumption the labeled graph obtained by the concate-
nation of the J#-paths E{, B and Ej,..., E, is a JZ-graph of type e, €, eq, ..., e, that
connects a vertex labeled (Ag,v) to a vertex labeled (A;,w) as required.
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Case 2 : Otherwise, |det(B)| = 1. In particular, the graph . being reduced, e
is a loop. We distinguish two subcases:

Subcase 2.1: There exists an edge f # € such that |det(M;yy)| > 2. Hence we
can apply Case 1 to obtain a -path E], E! of type f,f that connects a vertex
labeled (A],v) to a vertex labeled (A}, v). As f # € and (Ag,v) and (A{,v") satisfy
the Transfer Equation [3] the labeled graph which consists of

e the concatenation of the JZ-path E| with the J#-path E7, E);

e an edge E} labeled € with source t(E}) and target a new vertex labeled (Ao, v)

is a S -graph. As e # e;, we can concatenate the J#-path E, B}, Ej, E3 and the -
path Ei,..., E, to obtain a 7-path labeled e, f, f,€,e1,...,e, that connects a vertex
labeled (Ag) to a vertex labeled (A, w).

Subcase 2.2:  Otherwise, .77 consists of a collection of at least two loops based
at a single vertex such that every label (except possibly A) is in GLy(Q). As G is not
a semidirect product Z¢ x F,, one has necessarily |det(A)| > 2. Let f € S\ {e,e}.
Subcase 2.1 delivers a J#-path E7, E), B!, E) of type f,e, e, f that connects a vertex
labeled (Af,v) to a vertex labeled (A{,v). As f #€, the -graph which consists of

e the concatenation of the JZ-path E| with the J#-graph E{, B}, EY, E};
e an edge B! of type € that connects t(E)) to a new vertex labeled (Ao, v)

is a J7-path. As e # e;, we can concatenate the J-path £, £}, B}, B!, E}, E! and the
H-path Ey, ..., E, to obtain a .#-path labeled e, f,2,e, f,€, ey, ..., e, that connects a
vertex labeled (Ag) to a vertex labeled (A, w).
Hence we proved that there exists a Z-path labeled e, ...,eq, ..., e, that connects
a vertex labeled (Ag,v) to a vertex labeled (Ay,w). Using this result on the reverse
path (that connects a vertex labeled (Aj,w) to a vertex labeled (Ag,v)) leads to a
-path of type e, ...,e1, ..., €., ..., f that connects a vertex labeled (Ag,v) to a vertex
labeled (Aj,w), which leads to the conclusion.
]

Corollary 4.3. 7 -equivalence with respect to a prescribed vertex v is an equivalence
relation.

More precisely, the following holds: if Fy,...,E, (resp. Fi,...,Fs) is a J€-path
that connects a vertez labeled (Ao, v) (resp. (A1,v)) to a vertex labeled (Ay,v) (resp.
(Ag,v)), then there exists a 7 -path that contains F1, ..., E._1 and Fs, ..., Fy as disjoint
(labeled) subpaths.
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Proof. Let Ay, Ay, Ay < Z°.

As the empty path is a s#-path that connects any vertex labeled (Ag,v) to itself,
Ay is #-equivalent to itself (w.r.t. v).

If Ay is 7-equivalent to A; w.r.t. v, then there exists a reduced .7#-path Ey, ..., E,
with source labeled (Ag,v) and target labeled (A;,v). The reversed J#-path E,, ..., E;
has its source labeled (A1,v) and its target labeled (Ag,v). Thus, Ay is S#-equivalent
to Ag w.r.t. v.

Let us assume that A is 7Z-equivalent to A; w.r.t. v and that A; is FZ-equivalent
to Ay w.r.t. v Let Ey, ..., B, be a reduced #-path of type ey, ..., e, with source labeled
(Ao,v) and target labeled (Aj,v) and let Fi,...,Fs be a reduced J#-path of type
f1, .., fs with source labeled (A1,v) and target labeled (Ag,v).

Case 1: Let us assume that f; #e, Then, the concatenation of of these Z-paths
delivers a J#-path with source labeled (Ag,v) and target labeled (As,v).

Case 2: Otherwise, let us denote by e =e¢, = f;.

Subcase 2.1: First, we assume that there exists an edge g # e, such that
t(g) = v. By Lemma [4.2] there exists a J¢-path Ef, ..., E] of type e1,...,er, ..., g
that contains Ei, ..., E,. and that connects a vertex labeled (Ag,v) to a vertex labeled
(A1,v). As g # f1, the concatenation of the J#-paths E!, ..., E! and Fy, ..., F, delivers
a #-path with source labeled (Ag,v) and target labeled (A, v).

Subcase 2.2: Now we assume that e is the unique edge with target v.

Notice that in this case, e can’t be a loop. If r =0 or s = 0, we're done. Hence we
assume that 7, s > 1. Let u =s(e) and (A,B) := (M.g, Mcy). Let (Al,u) and (Ag,u)
be the labels of s(E,) and t(F}), respectively. By the Transfer Equation |3| we have

AA NZi=B1A, nZ¢
= ATA, nZe

Let us define s
A = B(A‘1A1 N Zd).

As e is not a loop and # is reduced, one has |det(B)| > 2. Hence the labeled graph
which consists of

e an edge | labeled e with source labeled (E, u) and target V labeled (A7,v);

e an edge I labeled e with source V' and target a vertex labeled (E,u)
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is a J¢-graph. Hence the concatenation of the J7-path E,..., E,. |, the J¢-path
E{, E{ and of the J#-path F5, ..., F delivers a s#-path that connects a vertex labeled
(Ag,v) to a vertex labeled (Ag,v).

In any case we proved that A, is JZ-equivalent to Ay w.r.t. v. O

Lemma 4.4. Let Ay be a subgroup of Z¢ and v € V(). There exists a finite F -
graph

e that is not simply connected;
e that contains a vertez labeled (Ao, v);

o that contains at least two non-saturated vertices.

Proof. We distinguish two cases:

Case 1: Assume that there exists a loop ¢y € £() based at v. Let us
consider a 7¢-path Ey, Ey labeled eg, ey such that

e the vertex t(F;) = s(FE3) is labeled (Ag,v);

e the vertex s(E,) is labeled (Ay,v), where Ay = M, ¢ (MQ}BAO n Zd) (so that A,
Ay and e satisfy the Transfer Equation ;

e the vertex t(E») is labeled (Ag,v), where Ay = M, ¢ (M;}SAO N Zd) (so that Ay,
As and e satisfy the Transfer Equation (3)).

We apply Lemma[4.2) to get a s -path labeled ey, ..., ¢y with source t(E,) and target
S(El).

Subcase 1.a: If there exists fy € £(J) \ {eg, €}, then the vertices t(F,) and
s(E1) are neither saturated relatively to fo nor to fo, which leads to the conclusion
in this particular case.

Subcase 1.b: Otherwize, as G is non-amenable, one has |det(M.s)| > 2 and
|det(Met)| > 2 by Proposition [3.18, In particular:

e as s(E,) is labeled by a subgroup A; of M, sz¢, one has
|29/ (A1, McsZ%)| = |det(M, )]
>9,

so, as Fp has a single outgoing edge labeled e, the vertex E; is non-saturated
relatively to e;

e likewise, the vertex t(F3) is non-saturated relatively to e.
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Case 2: Otherwise, we fix an edge ¢, € £() with source v such that
w = t(eg) # v. In particular, the graph of groups . being reduced, denoting by
(A,B) = (M, s, Meyt), one has |det(A)| > 2 and |det(B)| > 2. Let us define a
FC-path Ey, Esy, B3, Ey, B, Eg, E7, Ey as follows:

o I, E5, E5, E7 are labeled ey and Es, E,, Eg, Ey are labeled €g;

e s(F£) is labeled (Ag,v);

e the vertices t(F1), t(E3), t(Es) and t(E;) are all labeled (B(A~1AgnZ9), v);
e the vertices t(Fy), t(Ey), t(Es) and t(Eg) are labeled (Ag n AZ4 v).

Notice that at least four vertices are non-saturated relatively to some edge €€ £(7).
Indeed, by Proposition [3.18] as G is non-amenable and ¢ is reduced:

e cither |det(A)| > 3. In this case, the vertices t(Fs), t(E)), t(Eg) and t(Eg) are
non-saturated relatively to eg;

e or |det(B)| > 3. In this case, t(E;), t(Es3), t(Fs5) and t(F;) are non-saturated
relatively to eg;

e or there exists an edge fy # ep with source v. In this case, the vertices t(Es),
t(FEy), t(Es) and t(Eg) are non-saturated relatively to f;

e or there exists an edge fy # €g with target w. In this case, t(E1), t(Es3), t(Es)
and t(E7) are non-saturated relatively to fo.

In any case, denoting by Vi, Vs, V3, V) four non-saturated vertices relatively to some
edge €, Lemma [4.2] delivers a ¢ -graph C which consists of

e the J7-path Fy,..., Eg as a subgraph;
e another reduced 7-path F\, ..., F,. of type €, ..., @ with source V; and target V5.

The vertices V3 and V} are non-saturated relatively to €in C. Hence C is suitable. [

5 Perfect kernel of non-amenable GBS groups

The goal of this section is to give an explicit description of the perfect kernel in the
case where the GBS group G is non-amenable, i.e. is defined neither by a single
loop with at least one invertible matrix nor by a segment with two matrices having
determinant +2.

We start with the following lemma, that gives an inclusion in a more general
setting:
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Lemma 5.1. Let G be the fundamental group of a finite graph of groups F such
that, for every v e V(I), the group G, is noetherian (i.e. every subgroup of G, is
finitely generated (e.g. the G,’s are finitely generated abelian groups)). Let us denote
by T the Bass-Serre tree of 7. Then

K(G) < {H <G| H\T is infinite}.

Proof. Let H be a subgroup of G whose graph of groups H\T is finite. Let us show
that under the assumptions of the lemma, the set

Q={H'<G,H<H'"}

is a countable neighborhood of H in Sub(G).

First notice that every element of €2 has a finite graph of groups. In particular,
any element of €2 is finitely generated: denoting by £ its graph of groups, Bass-Serre
theory tells us that it is generated by a finite number of subgroups of G,’s (one per
each vertex of £, each of these being finitely generated by noetherianity of the G,’s),
and by one element per edge of J#. In particular:

e as H belongs to €, it is finitely generated so {2 is an open neighborhood of H;
e () is included in the subset of finitely generated subgroups, hence is countable.

This proves that H has a countable neighborhood, thus H ¢ (G). O
Now we prove Theorem [I.1}

Theorem 5.2. Let G be a non-amenable GBS group defined by a reduced graph of
groups € and let T be the associated Bass-Serre tree. Then

K(G)={H <G| H\T is infinite}.

Proof. By Lemma [5.1] and Remark [3.7], it suffices to show that any subgroup H of G
whose .#-graph G is infinite belongs to K(G). Let us fix v € V(7). Let us denote
by « the associated Z-preaction. Let 3 be a subpreaction of o whose -graph is a
finite subgraph K of G. By assumption, K has a vertex Vj labeled (Ag,vq) for some
Ag £ Z% and some vy € V (), which is not saturated relatively to some edge eq with
source vp. By Lemma there exists a -graph G, that contains K and such
that the quotient Go/K is an infinite forest. Hence, by Lemma , there exists a
JC-preaction aq that extends 5 and whose G-graph is Gj.

Let us first assume that .7 does not consist of a single vertex and a collection
of loops labeled by matrices in GL4(Z). By Lemma there exists a non-simply
connected finite 77-graph C that contains
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e a vertex labeled (Ag,v);

e two vertices V and W labeled (vi,A;) and (v, Ay) that are non-saturated
relatively to some edges denoted by e, f, respectively.

By Lemma[4.4] C is the #-graph of a /#-preaction 7. Lemmal[d.2]delivers a s#-path
P of type ey, ..., € that connects Vj to V. The vertex W is non-saturated relatively to
f in the #-graph K’ := K uPu(. By Lemma there exists a #-graph G; that
contains K’ and such that the quotient G;/K’ is a forest. Hence, by Lemma [3.11}]
there exists a -preaction a; that extends both § and v and whose J7-graph is
G1. As Gy and G; are non-isomorphic (because they don’t share the same homotopy
type), the (saturated) J#-preactions oy and «; both extend § and the associated
subgroups of G are different.

Otherwise, our group G is of the form Z¢x F, (where r > 2 denotes the number of
loops) and each generator of F, acts on Z¢ by multiplication by an invertible integer
matrix. Denoting by 7 : G = Z% x F, - F, the canonical surjection, every subgroup
of G is fully determined by its intersection Ag = AnZ? with Z¢, its image 7(A) < F,
under 7 satisfying

z-No=No Ve enm(A)
and, given a basis (a;).s (the set I being finite or countable) of w(A), elements
(ui,a;) € A for every i € I. Notice that in this case, the Bass-Serre tree of G is the
Cayley graph of F, with respect to the standard generating set, and that for any
subgroup H of G, the quotient graph H\T is infinite iff 7(H) € Subej(F;). One
distinguishes two cases:

1. Let us first assume that rk(Ag) = d. Let us denote by (A,B) = (M5, Me, t),
let us consider an edge fy # ey and let us write (C,D) = (Mg, s, My, ¢). As the
subgroup of SLs(Z) generated by DC-! acts on the (finite) set of lattices of
determinant +det(A;), there exists an integer k € N* satisfying

(DC_I)kAO = A(]

In particular, there exists a .#-cycle C = Ej, ..., B} all of whose edges are of
type fo such that s(E;) is labeled (s(ep), (DC1)iAy) for every i € [1,k]. As
no vertex of C is saturated relatively to ey, Lemma delivers a J7-path P of
type e, ..., €9 that connects V; to a vertex V of C. Any other vertex of C is not
saturated relatively to e in K’ := K uPuC. Hence we can conclude as in the
previous case.

2. If rk(Ap) < d, let us write Ag in its Smith normal form:

Ay = Pdiag(dy, ...,d,,0...,.0)Z¢
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(with P € GL4(Z), r < d and d;|d;;q for every i € [1,7 - 1]). For every N € N,
define

A(()N) = Pd]a,g (d17---7d7‘7NHdia“'7NHdi) Zd
i=1

i=1
so that
e every matrix stabilizing the subgroup Aq also stabilizes ASN) (in particular,
A(()N) is w(A)-stable);
e the sequence (A[()N))N " tends to Ag in Sub(Z?) as N tends to +oo.
€

Moreover, as (a;); is a free basis of (a;,7 € I'), one has
(Zd X 1) N ((ug,a;),1€T)={1}.
This implies that the sequence of subgroups

/N\N = (A(()N)7 (Uz', ai)ie[>
= A8 w0 {(ugy a3 )ier)

converges to A (non-trivially, because Aynzd= A((]N)). As m(Ay) = w(A), the
F¢-graphs of Ay and A have isomorphic skeletons (in particular, the subgroups
Ay have infinite JZ-graphs).

[]

Remark 5.3. Notice that we didn’t make use of the cocompactness of the action
G ~T. Thus, Theorem [5.2]extends to a larger class of groups that incluse GBS groups
of rank d, i.e. the class of non-amenable groups acting (non necessarily cocompactly)
on an oriented tree with vertex and edge stabilizers isomorphic to Z¢. In particular, in
the case of a non-cocompact action on the Bass-Serre tree, the perfect kernel consists
of the whole set of subgroups Sub(G).

The following corollary gives a class of GBS groups that satisfy the equality
K(G) = Sub[e1(G). Recall that in rank 1, the authors of [CGMS25] and [Bon24]
proved that this equality was true for non-unimodular GBS groups only. Let v be a
vertex of .77 and recall that the modular homomorphism A(Cf) based at v is defined
by the following data:

° Ag) is trivial on the vertex groups;
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e for every edge generator t., denoting by ey, ..., e, the unique reduced edge path
in .7 with source v and target s(e), and by e,,1,...e5 the unique reduced edge
path in .7 with source t(e) and target v, one has

AW (1) = Mo oMZ o M, ML
Corollary 5.4. Let G be a non-amenable and non-unimodular GBS group satisfying
the following property: for every non-trivial infinite index subgroup Ao € Subje)(Z%),
the subgroup
{geG| Ag)(g) Ao is commensurable to Ao}

has infinite index in G. Then
IC(G) = Sub[m](G).

Remark 5.5. If Ay is trivial or has finite index in Z¢, then Ag )(g) - Ay is commen-
surable to Ag for every g € G.

Before proving Corollary [5.4] we give an explicit example of a GBS group G of
rank 2 whose perfect kernel consists of the set of infinite index subgroups of G. Let

2 2 10
us define A = 5 4]an —(0 9

group of the graph of groups defined in Figure[7] In other words, G is defined by the
following presentation:

and let us define G = 7 () as the fundamental

G~ <£L‘7 y,t | vy = yo, t oyt = ot eyt = y2> .

A B

Figure 7: The graph of groups 7.

The image of the modular homomorphism Ag is the subgroup of GLy(Q) gener-

ated by B7TA = (? ;) Hence Im(detoAg) = 24, thus G is not unimodular. Notice

that Specg(B1A) = {2+1/2,2-/2}, so Specg((B-1A)") = {(2+ \/§)n (2- \/§)n}
for every n € Z. Thus, for any n € Z\ {0}, one has Specq((B™A)") = @. In particular,
for every u e Q% \ {0}, the set

{(B'A)"Qu,n € Z}
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is infinite, up to commensurability. Hence, by Corollary , one has K(G) = Subp.)(G).
Now let us prove Corollary 5.4} To begin with, we prove the following lemma:

Lemma 5.6. Let H be a subgroup of G and let us denote by G its 7 -graph. Let v €
V() and let (v, Ng) be the label of a vertex Vi of G. Then, up to commensurability:

{Ag)(g) Ao | ge G} ={A <Z%| 3a vertex V e V(G) labeled (Ay,v)}
= {A1 <Z%| Ay is S -equivalent to Ao w.r.t. v.}

Proof. Let us prove that
(A (g)- Mo | g€ G} € {Ay <Z7]| Fa vertex V € V(G) labeled (A1, v)}.

Let g € G. Let us consider a cycle ey,...,e, based at v in J# and elements g; € Gg(c,)
for every ¢ and ¢,,1 € G, such that

g =491 Se; ~g2--- " Se, " Gr+1

(where s, =t if e; ¢  and 1 otherwise). Denoting by (A;,B;) the label of e; for
every i € [1,7], one has:
AW (g) =B, AL BATL (5.7)

Let us consider an edge path Fi,..., E, based at V; and labeled eq,...e, in G. For
every i € [1,7], let (A;,t(e;)) be the label of t(E;). By the Transfer Equation [3| we
get

A;lAZ’_l n Zd = ]3;1]\Z n Zd

which implies that
AN ®Q4=B1A; © Q%

Thus
AT ® Qd = B,«A;l c. BlAIIAO ® Qd (58)

which implies, with Equation , that A, is commensurable to Ag)(g) - No.
If there exists a vertex V € V(G) labeled (A, v), then A; is J#-equivalent to Ag
w.r.t. v by connectedness of G. This proves that

{A; <Z%| 3a vertex V € V(Gy) labeled (A1, v)}
c {A; <Z%| A, is S-equivalent to Ay w.r.t. v}.

Finally, let us prove that

{A; <Z4| A is H-equivalent to Ag w.r.t. v} {Ag)(g) Ao, g€ G}
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up to commensurability. Let A; be a subgroup which is J7-equivalent to Ay w.r.t. v.
Let us consider a #-path F1, ..., E, labeled e, ..., e, whose source is labeled (Ag,v)
and whose target is labeled (Aj,v). For i € [1,r], let us denote by (I';,s(e;)) the
label of s(E;) (hence I'y = Ay). By the Transfer Equation [3| denoting by (A;, B;) the
label of e; in J¢ we get, as previously

A ®Q?=B,A". . .BiAT'A)® Q7.
Thus, denoting by g = s.,...S., (where s, =t,, if e; ¢ .7 and 1 otherwise), one has:
M Q=AY () Age QY
which proves that A; is commensurable to Ag) )( g) - Ao. O

Proof of Corollary[5.4. Let H be a subgroup of G whose graph of groups is finite.
Let us show that H has finite index under the assumptions of the corollary. Let G be
the 77 -graph of H. Let us denote by (Ag,v) the label of a vertex of G. By Lemma

, the orbit of the commensurability class of Ay under the action of Im(Ag})> is
nite. Hence its stabilizer

{ge G| Ag])(g) Ao is commensurable to Ag}

has finite index in G. This implies that

e cither Ay has finite index in Z¢;
e or Ag =0.

Let us assume by contradiction that Ag = {0}. By commensurability of the vertex
stabilizers, this is equivalent to

HnG,={1} for every vertex w € V()

(or equivalently, all the labels of the vertices of G are trivial).
As the image of the morphism ‘det oA(G? )’ is non-trivial, there exists a (reduced)
cycle of edges ey, ..., e, in JZ based at v and satisfying

[T, det(A;)
H;r»l:l det(B,)

Let n; be the number of vertices of G labeled s(e;). Every vertex labeled s(e;) (resp.
t(e;)) has |det(A;)| (resp. |det(B;)|) outgoing (resp. incoming) edges labeled e;.
Hence the number of edges labeled ¢; in G is

1
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Combining these equalities for ¢ = 1,...,n, we get

n n

[Idet(A)|=]ldet(B)|

i=1 i=1

hence a contradiction. Thus, Ay has finite index in Gg(,). By commensurability
of the vertex stabilisers, this implies that H n GG,, has finite index in G,, for every
w € V() which implies that H\G is finite (because G is also finite).

Using Theorem [5.2] we finally deduce the equality

’C(G) = Sub[oo](G).
O

Remark 5.9. If GG is a non-unimodular GBS group such that every element of the
image of the modular homomorphism Ag ) is irreducible (as a Q-linear endomorphism
of Q4), then the assumptions of Corollary are satisfied. Let us explain why. As

G is non-unimodular, there exists g € G such that ‘det (Ag)(g))| # 1. In particular,

Ag’)(g) has infinite order, hence Im (A?) is infinite. Now assume by contradiction
that there exists a non-trivial infinite index subgroup Ag of Z¢ such that the subgroup

{g eG | Ag)(g) Ao is commensurable to AO}

has finite index in G. Equivalently, the orbit of the commensurability class of Ag
under the action of Im(Agf )) is finite, so by the piegonhole principle, there exists

a non-trivial element Ag’)(g) € Im (Ag])) such that Ag)(g) (Ao®Q) =Ag®Q. In
particular, Ag ® Q% is a non-trivial subspace of the Q-vector space Q¢ which is stable
under Ag)(g), which contradicts the assumption made on G.

6 A dynamical partition of the perfect kernel

The goal of this section is to extend the decomposition of the perfect kernel obtained
in [CGMS25| and in [Bon24| for non-amenable GBS groups of rank 1.

6.1 Case where G is not a semidirect product Z¢ x F,

In this section, we assume that G is not a semidirect product Z¢xF,., i.e. 5 does not
consist of a single vertex with a collection of loops all of whose labels are in G L4(Z).
This allow us to make use of the equivalence relation on Sub(Z?) defined in [4]
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Let us fix a vertex v € V(). We identify G, with Z¢. Let us denote by ~ the
S -equivalence relation with respect to v and by 7, : Sub(Z%) - Sub(Z%)/ ~ the
canonical projection. Notice that the rank is constant on each fiber of m,. We have
the following statement:

Proposition 6.1. The set Sub(Z?)/ ~ is infinite countable.

Proof. As Sub(Z¢) is countable, the set Sub(Z?)/ ~ is also countable. Let us show
that it is infinite. Let us define the finite subset P, of prime numbers

P ={p € P | there exists an edge e € (), p| det(M,¢)}.
Let us define
L(Z%) - Z
A o T, Pl
The image of ¢ is exactly the set of integers which are divisible by no element of P,

hence is infinite. Let us show that ¢ is constant on the fibers of m,, i.e. that we have
a factorization

O

L(Z4) ——5(2)
S
L(z)] =~
which will imply that £(Z?)/ ~ is infinite (hence Sub(Z%)/ ~ is infinite).
By a straightforward induction on the length of a J#-path, it suffices to prove
that for any J#-edge labeled e € () with source labeled (Ag,s(e)) and target

labeled (Aq,t(e)), one has 0(Ag) = 6(A1). Let E be such an edge. By the Transfer
Equation [3| denoting by (A,B) = (M.s, M), one has

A71A0 n Zd = B71A1 N Zd.
Let pe P NP,. We have

det(Agn AZ4)  det(A, nBZ9)
det(A)  det(B)

hence, as p + det(A) and p + det(B):
|det(Ag n AZY)|, = |det(A; n BZY)|,,. (6.2)
From det(A)Ag < AgnAZ4 < Ay, we get

det(Ao) | det(Agn AZ?) | det(Ag)(det(A))?.
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Thus, as p 4+ det(A):
[det(Ao), = |det(Ag 1 AZ%)),

Likewise
|det(A1)|p = |det(A; n BZd)|p,

so by Equation we finally get
| det(Ao)lp = [det(Ar)lp-
As this is true for any p ¢ P, this implies that
6(Ao) = 0(Ay)
as required. O

Let us define the 7#-phenotype with respect to v as the following function:

S Sub(G) - Sub(Z¢)/ =~
v H e m(HnGy)

Proposition 6.3. The J€-phenotype Phy, is surjective and invariant under con-

Jugation by any element of G.

Proof. The surjectivity of Ph  , results from the surjectivity of m, and of the function
Sub(G) - Sub(G,)
H » HnG,
Let H be a subgroup of G and g € G. Let Ag:= HNG, <Z%and A = gHg 'nG, <
Z4. Let G be the J7-graph of H. By definition, there exist two vertices labeled (Ag, v)
and (A1,v) in G. Hence, by connectedness of G, one has m,(Ag) = m,(A1). O

As the group G, acts non-cocompactly on the Bass-Serre tree 7, any subgroup
of G, lies in the perfect kernel £(G) by Theorem [5.2] In particular, the restriction
K(G) - Sub(G,)/=~
H » m(HnG,)

This function leads to a dynamical partition of the perfect kernel

remains surjective and invariant under conjugation.

K(G) = | K(@)n Pl (m(A)). (6.4)

A<Zd

By the previous remark and Proposition [6.1] this partition is infinite countable. Now
we are able to prove Theorem [I.2] which gives a description of the dynamics induced
on each piece of the aforementioned decomposition:
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Theorem 6.5. For any Ao < Z¢, there exists a dense orbit in Ph_}}’v(m(/\o)) NnK(G).

Proof. Let A < Z¢ and let (H,);n € (K(G) ﬁPh}éw(m(A)))N be the sequence of
finitely generated subgroups lying in £(G) n Ph;}m(m,(A)). For i € N, let a; be the
¢ -action associated to H; and let G; be the 77-graph of «;. Let 3; be a subpreaction
of a; that corresponds to the same subgroup as «; and whose 7-graph K; is finite
(legit, because H, is finitely generated). As H; € K(G), Theorem [5.2]implies that there
exists a vertex V; € V(K;) labeled (A;,v;) which is non-saturated relatively to some
edge e; € £(A). Up to extending f3;, one can assume that v; = v. In particular, the
subgroups (A;);n of Z% are pairwise J#-equivalent w.r.t. v so by Lemma , there
exists a J-path Ey, ..., E,, ; labeled e;, ..., ;11 that connects V; to V;,;. Denoting by
G the resulting JZ-graph, Lemma delivers a #-graph F

e that contains (K;); as disjoint subgraphs;
e such that the quotient F/| ;N K is a forest.

Hence, by Lemma there exists a .7#-action [ that extends ; for every i € N and
whose s -graph is F. This proves that the conjugacy class of G which is associated
to B is dense in KC(G) nPhi; , (m,(A)). O

Now we study the topology of the pieces of the partition

Sub(G) = || Py}, (m(A)).

A<zd
Proposition 6.6. For any Ag < Z%:
1. if Ao has finite index in Z%, then the fiber Ph}}m(m(Ao)) is open;
2. otherwise, Ph;}’v(m(/\o)) is an F,;
3. Phiy(m,({Ao})) is closed iff {A1 <Z%| Ay ~ Ao} is finite.
Remark 6.7. In particular, Phy, (7, ({0})) is closed.

Remark 6.8. If the image of the modular homomorphism is trivial, then the third
item of Lemma [6.6] together with Lemma [5.6] implies that all pieces are closed.

Proof of Proposition[6.6 Notice that we have

Phiy (m(Ao)) = U {H<G|HnG, =M}
A1~Ag
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By Lemmal[2.1] this is a F, as a countable union of closed subsets of Sub(G). Hence,
we get the second point.

If A has finite index in Z¢, this is an open subset of Sub(G) as a union of open
sets by Lemma [2.1 This proves the first point.

If {Ay < Z%| Ay = Ao} is finite, then Ph, ,(m,(Ao)) is closed as a finite union
of closed subsets by Lemma Otherwise, there exists a sequence of subgroups
(Ap)nen € (51 (m,(Ag) )N that converges to a subgroup A < Z% whose rank is strictly
less than rk(Ag). By a straightforward induction using Corollary [£.3] there exists a
A -path Ey, ..., E,, ... such that: for every n € N, there exists k, € N such that s (E},)
is labeled (A,,v). Thus, by Lemma , there exists a saturated .#-graph which is
a forest that contains Fi, ..., F,, ... as a sub-5¢-graph. Hence by Lemma there
exists a subgroup H < G and elements g, € G such that g,Hg;' nG, = A,, for every
n € N. Up to extracting, the sequence g,Hg;' converges to a subgroup K < G that
satisfies K n G, = A. In particular, as the rank is constant on the fibers of m,, one
has K ¢ Ph;ilpw(m,(A)), which proves that Ph;ilaw(m(Ao)) is not closed. O

Remark 6.9. The definition of the equivalence relation ~ still makes sense if the
graph 7 is infinite and the same proof extends to the class of groups that act
(non necessarily cocompactly) on an oriented tree with vertex and edge stabilizers
isomorphic to Z?. In the case of a non-cocompact action on the Bass-Serre tree, we
thus obtain a dynamical partition of the whole set of subgroups by Remark [5.3]

6.2 Case where G=2Z9xF,

Now we assume that JZ consists of a collection of r loops ey, ..., e, based at a single
vertex v such that, for every i € [1,7], the label (A;,B;) of e; satisfies: A; € GLy(Z)
and B; € GL4(Z). Denoting by

P, = A,-B;l,

the group G is isomorphic to the semidirect product of G, = Z¢ with the free group
F. = (a1,...,a,) of rank r, where the generator a; acts on Z¢ by multiplication by
P;. Let us denote by p : F, > GL4(Z) the morphism that satisfies p(a;) = P; for
every i € [1,7] and by I' = p(F,). Observe that this F,-action induces an F,-action
on Sub(G,) defined as follows: for any subgroup A <G, and any v € F,:

v-A=p(7)A
= (u,7)A(u, 7)™ Vu ez

(when identifying G, with G, x {1} in G, x F,.).
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Remark 6.10. If A is a finite index subgroup of G,, then for every v € F,, one has
|det(p(y)A)| = |det(A)|. As there exist only finitely many lattices of Z¢ of a given
determinant, the orbit F.-A = {p(7)A | v € F.} is finite.

Let us denote by 7: Z% x F, — F, the projection.

Our goal is to decompose the perfect kernel of G into countably many pieces
on which the action by conjugation contains a dense orbit. Let us recall that (by
Theorem |5.2)), one has

IC(G) = {H <G | 7T(H) € Sub[oo](Fr)}.

Notice that, as the subgroup G, is normal, denoting by Conj(G,) the set of classes
for the action of G on Sub(G,) by conjugation, the following partition

Sub(G)= || {H<G|HnG,c¥%} (6.11)
€cConj(Gyv)

is G-invariant. Denoting by & = {p(v)Ao,y € F,.} for some Ag < G, we get that

{H<G|HnG,e€}=|J{H<G|HnG,=p(7)\o}.

~veFr

Notice that |det| is constant on € for every € € Conj(G,). In particular, there are
infinitely many pieces in the decomposition (6.11]).

This partition leads to a G-invariant partition of the perfect kernel into countably
many pieces

K(G)= || {HeK(G)|HnG,e%}.
GeConj(Gy)

Notice that this is exactly the decomposition (6.4) we obtained in the previous case
of a GBS group G which is not Z%-by-free: two subgroups Ay, A; of G, can arise as
the labels of two vertices of some connected 7-graph iff there exists some 7 € F,. such
that p(v)Ag = Ay, or equivalently, iff Ag and A; belong to the same orbit under the G-
conjugation. However, the proof of Theorem does not extend to our new setting,
because the relation ~ need not be transitive anymore. This difficulty turns out to
be a real obstruction: the conjugation action need not be topologically transitive on
each piece in our new setting. This comes from the fact that the skeleton of the
¢ -graph of a subgroup of GG is related to its intersection with the vertex group G,
as follows:

Lemma 6.12. Let H be a subgroup of G. Then w(H) < Stabg (H N G,).
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Proof. Let v en(H). There exists u € Z¢ such that (u,7) € H. For any (v,1) € HNG,,
one has

(u,7) (v, 1) (u, 7)™ = (p(7)(v), 1)
e

which implies that p(v)(v) € H nG,. Consequently, p(v)(H nG,) = Hn G, thus
v € Stabg, (H nG,). Hence, 7(H) < Stabg (H N G,). O

Let us fix € € Conj(G,). Lemma allows us to decompose

Py:={HeK(G)|HnG,€F}
={HeK(G)| HnG, €% and w(H) e K(Stabg, (HnG,))}
| KH e K(G)|HnG, €€ and w(H) ¢ K(Stabg,(HnG,))},

each of these two pieces being invariant under G-conjugation. Notice that the second
piece
Dy={HeK(G)|HnG,e% and n(H) ¢ K(Stabg, (HnG,))}

of this last decomposition is always countable and open for the induced topology on

Pe.
Remark 6.13. More precisely, two cases can occur:

e If Stabg, (Ag) is infinitely generated or Stabg, (Ag) has finite index in F, (for
some, equivalently for all Ag € ©), then Dy is empty;

e Otherwise, it consists of
{HeK(G)|HnG, €% and w(H) ¢ Subje)(Stabg, (H nG,))}
if Stabg, (Ag) is not infinite cyclic, and of Py otherwize.

Lemma 6.14. For every € € Conj(G,), there ezists a dense orbit in
PyDy={HeK(G)|HNG, €€ and w(H) e K(Stabg (HNG,))}.

To prove this lemma we will use the formalism of .7#-graphs. Notice that in this
context, the #-graph G of a subgroup H < G will be uniquely determined by 7 (H)
and H nG,. It is the Schreier graph of the subgroup n(H) < F, (with respect to
the generating set {aj,...,a,}) whose labels are defined as follows: if V; is a vertex
labeled Ay := Hn G, and V is any other vertex of G, then, denoting by FEj,..., Es an
edge path labeled fi,..., fs that connects Vj to V, the Transfer Equation |3 tells us
that the label of V' is the subgroup (M foaMpl M fl,tM}ll,s) Ag of Z4. In particular,
the set of labels of the vertices of G is exactly {p(7v)Ao,7v € F,}.
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Proof. Let € € Conj(G,) and let Ag € €. Let us denote by I'g := Stabg, (I'g). Let
(H;)ien+ € (Pg ~ Dg)N be the sequence of finitely generated subgroups such that
H;nG, = A for every i e N*. For every i € N*, let «; be the saturated .7-preaction
associated to H;, and let G; be its s7-graph. Let ; be a subpreaction of «; that
corresponds to the same subgroup as a; and whose .#-graph K is a finite subgraph
of G; that contains V; (legit, because H; is finitely generated). Let S; be the graph
obtained by forgetting the labels of the vertices of G;, pointed at the vertex V;. The
graph S; is the Schreier graph of m(H;) with respect to the generating set {a1,...a,}
of F,. As w(H;) is a subgroup of Ty, denoting by Sy the Schreier graph of Ty, the
graph S; is in fact a covering of the graph S, (for every i e N*). As 7w(H;) belongs to
K(T'y), one has the following dichotomy:

e cither I'y is not finitely generated;

e or [y is finitely generated and the covering map S; - Sy has infinite degree for
every i € N*.

Let us define F; as the subgraph of S; obtained by forgetting the labels of the subgraph
K, og G;. In both cases, Remark provides a covering map S — Sy such that S
contains (Fj);n+ as disjoint subgraphs and such that the quotient S/|lien+ Fi is a
tree. This covering corresponds to an infinite index subgroup I' € Subj.j(I'g). After
labeling the vertex V; by the subgroup Ag (and all the other vertices of S so that the
Transfer Equation [3|is satisfied), we obtain an infinite J#-graph F:

e that contains (K;);n+ as disjoint subgraphs;
e such that the quotient F/|Jen+ K; is a tree.

Thus, by Lemma [3.11] there exists a saturated J#-preaction 7 that extends 3; for
every ¢ € N* and whose JZ-graph F is infinite. Denoting by L a subgroup of G
associated to 7, as the J#-graph of L contains a vertex labeled Ay, one has LnG, € €
and as the covering map S — Sy has infinite degree, one also has (L) € Subj.j(F,) N

K(Stabg, (L nG,)), which concludes the proof. O
Hence we obtain the following decomposition of K(G):

Theorem 6.15. There exists a G-invariant countable partition

K@G= || Pe

€ecConj(Gy)

into Fy-subsets of K(G), and, for every € € Conj(G,), a countable G-invariant open
subset Dy C Py (for the induced topology on Py) such there ezists a dense orbit in
Py N Dy. Moreover, denoting by € = {p(v)No,7 € F.} for some Ay < Z%:
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1. if Ay has finite index in Z¢, then Py is a clopen set;
2. Py is closed iff Stabg_ (Ag) has finite index in F,;
3. if Stabg, (Ag) either is infinitely generated or has finite index in F,., then Dy = @.

Proof. The existence of a dense orbit in Py \ Dy is provided by Lemma [6.14] The
fact that Py is an F, results from Lemma [2.1]

Now let us turn to the proof of the second item. Let Ay < Z% and let € be the
G-conjugacy class of Ag. The fact that Stabg, (Ag) has finite index in F, is equivalent
to the finiteness of the orbit {p(g)Ag,g € G}. In particular, Stabg (Ag) has finite
index in F,, then

Py = LFJ {H eK(G) | HnG,=p(g)Ao}
geF;
is closed as a finite union of closed sets by Lemma[2.1] Conversely, let us assume that
the set {p(g)Ao, g € G} is infinite. In particular, there exists a sequence (g, )nen € FN
such that p(g,)Ao converges to a subgroup A < G, of rank strictly less than the one
of Ag. In particular, p(g,)Ag € Py for every n, but A ¢ Py which implies that Py is
not closed.
The third item results from Remark [6.13] O

Remark 6.16. Again, we didn’t use the cocompactness of the action of G on its
Bass-Serre tree. In other words, Theorem [6.15] extends to the case where r = co.

To conclude, we give an explicit example where the set Dy is non-empty, and
where the conjugation action has no dense orbit for the induced topology on Py:

Example 6.17. Let P, and P, be two matrices that generate a free subgroup of
: 1 2 10
SLy(2); for instance, Pj = 0 1 and P, = 5 1

Z2 x Fy, where, denoting by {a1,as} a basis of Fy, the generator a; acts by multipli-
cation by P; on Z2.

. Let G be the semidirect product

Let Ag = ((1)) Z. Then, any matrix of SLy(Z) stabilizing the subgroup Ag of Z? is a
power of ( 0 1). As the morphism p: a1 +~ P is injective, the stabilizer
az = Py

Stabg, (Ao) is also infinite cyclic (in fact, it is the subgroup generated by a;). In
particular, its perfect kernel is empty, so denoting by % := F, - Ay the G-conjugacy
class of Ag, one has

Dy =Py.
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Let us show that there is no dense orbit for the conjugation action G ~ Py. For
any v € Z2, let us consider the following invariant subsets

U,={H ePy|3geG g(v,a1)g" € H}.
The set U, is open as a union of clopen sets:

Us=U{H €Pe | g(v,a1)g™" € H}.
geG

Claim 6.18. For every v,w € Z? such that v—w ¢ Ay, one has U,nU, = @.

As the quotient Z2/A is infinite, this will imply the existence of an infinite count-
able set of pairwise disjoint open subsets, contradicting the existence of a dense orbit.

Proof of the claim. By contraposition, let v, w € Z? such that U,nU,, # @. Let H € Py
and g € G such that

o (v,a1) € H;
o g(w,a1)gt e H.

As H € Py, there exists v € Fy such that H nZ2? = p(y)Ay. Thus, Stabg,(H nZ?) =
v¥{a1)y~t. Denoting by ¢g = (ug,7), one deduces that ay,va17v5" € v(a1)y~!. This
forces v and 7y to belong to (a;). In particular, H nZ2? = Ag. Let k € Z such that
Yo = a¥. One has

g(w,ar)g  (v,ay)™" = (uo, alf) (w,a) (uo, alf)_l (v,a;)™

= (uo + p(ar)*w, at™") (=p(a1) o, a7*) (v,a1) ™
= (ug + p(ar)fw = p(ar)u, ar) (=p(ar) v, a7")
= (uo - Piug + Plkw -, 1)
e(HnZ?) x{1}
= Ao x {1}.
Thus, ug — Pyug + PFw —v € Ag. Notice that (I, — P;)Z? ¢ Ag. Thus,

uy — Prug € Ay,

and
k-1
Pfw=w+ Y P{(Piw-w)
i=0
cw+ A(),
which implies that w —v € Aq. O]

41



References

[AG24]

[Bas93]

[BGK12]

[Bon24]

[BS62]

[CGLM23]

[CGMS25]

[CGP10]

[FLMMS22]

[GMS24]

[GPT-]

Perfect kernel and dynamics: from Bass-Serre theory to hyperbolic
groups. Mathematische Annalen, 391(3):4733-4789, 2024.

Hyman Bass. Covering theory for graphs of groups. Journal of Pure
and Applied Algebra, 89(1):3-47, 1993.

Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko. Invari-
ant random subgroups of lamplighter groups. Israel Journal of Mathe-
matics, 207:763-782, 2012.

Sasha Bontemps. Perfect kernel of generalized Baumslag-Solitar groups,
2024. arXiv: 2411.03221.

Gilbert Baumslag and Donald Solitar. Some two-generator one-relator
non-Hopfian groups. Bull. Amer. Math. Soc., 68(6):199-201, 1962.

Alessandro Carderi, Damien Gaboriau, and Frangois Le Maitre. On
dense totipotent free subgroups in full groups. Geometry € Topology,
27:2297-2318, 2023.

Alessandro Carderi, Damien Gaboriau, Francois Maitre, and Yves
Stalder. On the space of subgroups of baumslag—solitar groups I: Perfect
kernel and phenotype. Revista Matemdtica Iberoamericana, 41(5):1711—
1758, 2025.

Yves Cornulier, Luc Guyot, and Wolfgang Pitsch. The space of sub-
groups of an abelian group. Journal of the London Mathematical Society,
81(3):727-746, 2010.

Pierre Fima, Frangois Le Maitre, Soyoung Moon, and Yves Stalder. A
characterization of high transitivity for groups acting on trees. Discrete
Analysis, 2022.

Damien Gaboriau, Francois Le Maitre, and Yves Stalder. On the space
of subgroups of Baumslag-Solitar groups II: High transitivity, 2024.
arXiv: 2410.23224.

Damien Gaboriau, Antoine Poulin, Anush Tserunyan, Robin Tucker-
Drob, and Konrad Wrébel. Measure equivalence classification of
Baumslag-Solitar groups. in preparation.

42



[Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of
Grad. Texts Math. Berlin: Springer-Verlag, 1995.

[LAGZS25] Jone Lopez de Gamiz Zearra and Sam Shepherd. Separability proper-
ties of higher rank GBS groups. Bulletin of the London Mathematical
Society, 57(4):1171-1194, 2025.

[Lev07] Gilbert Levitt. On the automorphism group of generalized Baumslag-
Solitar groups. Geometry €& Topology, 11(1):473-515, 2007.

[Lev15] Gilbert Levitt. Generalized Baumslag—Solitar groups: rank and finite
index subgroups. Annales de I’Institut Fourier, 65(2):725-762, 2015.

[Ser83] J.P. Serre. Arbres, amalgames, SL2: cours au College de France.
Astérisque / Société Mathématique de France. Société Mathématique
de France, 1983.

[Why01] K. Whyte. The large scale geometry of the higher Baumslag-Solitar
groups. Geom. Funct. Anal., 11(6):1327-1343, 2001.

ENS-LyoN, UNITE DE MATHEMATIQUES PURES ET APPLIQUEES, 69007 LYON, FRANCE

sasha.bontemps@ens-lyon.fr

43



	Introduction
	Preliminaries and notations
	Graphs
	Space of subgroups of a countable group
	Graphs of groups

	H-preactions and H-graphs
	General setting
	Generalized Baumslag-Solitar groups

	An equivalence relation on Sub(Zd)
	Perfect kernel of non-amenable GBS groups
	A dynamical partition of the perfect kernel
	Case where G is not a semidirect product Zd Fr
	Case where G = Zd Fr


