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Abstract

In this article, we study the space of subgroups of non-amenable general-
ized Baumslag-Solitar groups (GBS groups) of rank d, that is, groups acting
cocompactly on an oriented tree with vertex and edge stabilizers isomorphic to
Zd. Our results generalize the study of Baumslag-Solitar groups, and of GBS
groups of rank 1. We give an explicit description of the perfect kernel of a
non-amenable GBS group G of rank d and show the existence of a partition
of the perfect kernel into a countably infinite set of pieces which are invariant
under the action by conjugation of G, and such that each piece contains a dense
orbit.

Keywords: higher rank generalized Baumslag-Solitar groups; space of subgroups; Schreier

graphs; perfect kernel; topologically transitive actions; Bass-Serre theory.
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1 Introduction

A generalized Baumslag-Solitar group (GBS group) of rank d is a group that acts co-
compactly on an oriented tree such that the vertex and edge stabilizers are isomorphic
to Zd. As a consequence of Bass-Serre theory, a generalized Baumslag-Solitar group
is defined by a finite iteration of HNN extensions and amalgamated free products of
Zd over Zd.

GBS groups of rank d > 1 are a generalization of GBS groups of rank 1, which
arise as a natural generalization of Baumslag-Solitar groups BS(m,n) = ⟨b, t ∣ tbnt−1 =
bm⟩. Baumslag-Solitar groups were introduced in [BS62] to give the first examples of
two generated finitely presented non-Hopfian groups. GBS groups have been widely
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studied in relation to various properties. In [Lev15], Levitt computed the minimal
number of generators of a GBS group of rank 1. He studied their automorphism
groups in [Lev07]. The classification up to quasi-isometry of GBS groups of rank 1 is
known (see [Why01]) and the classification up to measure equivalence of Baumslag-
Solitar groups has been announced by the authors of [GPT+]. In [LdGZS25], the
authors determined which GBS groups (of arbitrary rank) are residually finite and
which are LERF.

In this article, we will focus on the set of subgroups Sub(G) of a GBS group G
from a topological point of view. This means that we are more interested in the
topological structure of Sub(G), seen as a closed subset of the Cantor set {0,1}G,
than in the algebraic properties of the subgroups of G. Cantor-Bendixson theory (see
[Kec95]) leads to a unique decomposition Sub(G) = K(G) ⊔C into a closed subspace
without isolated points called the perfect kernel of G and a countable set C. As the
action by conjugation of G induces a homeomorphism of Sub(G), the perfect kernel
is G-invariant. We are interested in the computation of the perfect kernel and the
dynamics induced by the action by conjugation of G on it.

The perfect kernel of any finitely generated abelian group is empty. In [CGP10],
the authors classified the set of subgroups of all countable abelian groups up to
homeomorphism. In [BGK12], the authors proved that the perfect kernel of the
lamplighter group (Z/pZ)n ≀Z (where p is a prime number) is the set of subgroups of

⊕Z Z/pZn.
If G is a finitely generated group, then finite index subgroups are isolated. Thus

the perfect kernel of G is included in the set of infinite index subgroups of G. The
authors of [CGLM23] observed that equality holds for the non-abelian finitely gen-
erated free group Fr on r generators, and that the action of Fr on its perfect kernel
is topologically transitive. Recall that an action of a group G on a topological space
X is topologically transitive if for every non-empty open subsets U,V ⊆ X, there
exists g ∈ G such that gU ∩ V ≠ ∅. In the case where X is Polish, this is equivalent
to the existence of a dense orbit. The authors of [AG24] extended this result to a
large class of groups acting on trees. They proved that the perfect kernel of a finitely
generated group G with infinitely many ends is also equal to the set of infinite in-
dex subgroups, and that the action by conjugation is topologically transitive on the
perfect kernel as soon as G does not contain any non-trivial finite normal subgroup.
More generally, they proved that for any finitely generated group G that acts (mini-
mally and irreducibly) on a tree T such that the action of G on T is acylindrical, then
any subgroup H of G satisfying that the quotient graph H/T is infinite belongs to
the perfect kernel of G. In this case, they also proved that the action by conjugation
of G on the closure of the set of subgroups H acting on T with infinitely many orbits
of edges is topologically transitive. Recall that an action of a group G on a tree T
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is acylindrical if there exists R > 0 such that the stabilizer of any path of length
larger than R is trivial.

GBS groups of rank d are typical examples of groups whose action on their Bass-
Serre tree is not acylindrical, because the stabilizer of any finite subtree of the Bass-
Serre tree is isomorphic to Zd. The authors of [CGMS25] (who studied Baumslag-
Solitar groups) and of [Bon24] (who extended some results obtained by the aforemen-
tioned authors to GBS groups of rank 1) observed that this leads to very different
dynamics for the action by conjugation of a non-amenable GBS group G of rank 1
on its perfect kernel. More precisely, they showed that K(G) = Sub[∞](G) if and
only if G is not unimodular. Recall that one characterization of unimodularity for
a GBS group of rank 1 is the existence of an infinite cyclic normal subgroup (see
[Lev07][Section 2] for instance). They also described a countably infinite G-invariant
partition of K(G), such that G acts topologically transitively on each piece. One
piece is closed and all the other ones are open (and also closed if and only if G is
unimodular). To obtain this decomposition, the authors of [CGMS25] introduced the
phenotype, which is a G-invariant function Sub(G) → N∗ ∪ {∞}, and which was
generalized in [Bon24]. This function is computable and encodes the decomposition
of the perfect kernel.

In this article, we will extend these results to non-amenable GBS groups of an
arbitrary rank d, that is to say, those which are neither isomorphic to Z[A,A−1](Zd)⋊
Z for some A ∈Md(Z)∩GLd(Q) (where Z[A,A−1](Zd) is the subgroup of Qd defined by
{Aku, k ∈ Z, u ∈ Zd} and Z acts on Z[A,A−1](Zd) by multiplication by A) nor to any
amalgamated free product Zd ∗Zd Zd where both injections are defined by matrices of
determinant ±2 (cf. Proposition 3.18). More precisely, we prove the following result
(cf. Theorem 5.2):

Theorem 1.1. Let G be a non-amenable GBS group of rank d defined by a reduced
graph of groups H and let T be the Bass-Serre tree of H . Then

K(G) = {H ≤ G ∣H/T is infinite}.

We also give some sufficient conditions that depend on the modular homomor-
phism (see Section 3.2) for the perfect kernel to be equal to Sub[∞](G).

We also obtain a generalization of the main results of [CGMS25] and [Bon24] (cf.
Equation 6.4 and Theorem 6.5 if G is not a semidirect product, and Theorem 6.15
otherwize):

Theorem 1.2. Let G be a non-amenable GBS group of rank d. There exists a
countably infinite G-invariant partition of the perfect kernel of G into pieces that
contain dense orbits.
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This implies in particular that the action is topologically transitive on each piece.
We also investigate the topology of the pieces that appear in these decompositions,

which is slightly different depending on whether G is a semidirect product Zd ⋊ Fr

(cf. Theorem 6.15) or not (cf. Proposition 6.6). As some of these pieces need not be
Polish, proving high transitivity does not suffice to get the existence of a dense orbit
in each piece.

The paper is organized as follows. Given a graph of groups H of fundamental
group G, we extend the notion of H -preactions and of H -graphs in Section 3.1.
They were introduced in [FLMMS22] in the case where G is an amalgamated free
product or an HNN-extension (i.e. if H consists of a single edge), and adapted in
[CGMS25] in the case of Baumslag-Solitar groups and in [Bon24] in the case of GBS
groups of rank 1. In Section 5, we prove Theorem 1.1. Finally, in Section 6, we show
the existence of the decomposition of Theorem 1.2 and investigate the topology of
the pieces. This gives rise to a natural generalization of the phenotype defined in
[CGMS25] and in [Bon24]. However, we do not know if this decomposition is still
computable in this wider context, and we do not know if our arguments can be used to
prove high topological transitivity results as in [GMS24] for Baumslag-Solitar groups
and in [Bon24] for GBS groups of rank 1.
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2 Preliminaries and notations

We denote by P the set of prime numbers in N. For every integer N and p ∈ P ,
we denote by ∣N ∣p the p-adic valuation of N , that is, the largest n ∈ N such that pn

divides N . By ”countable” we mean finite or in bijection with N. Given a group
G, we denote by Sub(G) the set of subgroups of G and by Sub[∞](G) the subset
of Sub(G) that consists of infinite index subgroups. If H ≤ G is a subgroup, we
denote by [H]G the G-conjugacy class of H. For any d ∈ N∗, we denote by L(Zd)
the set of lattices of Zd, i.e. the set of finite index subgroups of Zd. If K is a field
and M ∈ Md(K), one denotes by SpecK(M) the spectrum of M in K, i.e. the set of
elements λ ∈ K such that det(M − λId) = 0.

2.1 Graphs

We refer to [Bon24], Section 2 for the notations and definitions around graphs and
Schreier graphs. We add the following terminology: given a graph H , an element of
E(H ) × {s, t} is called an half-edge. The inferior half-edge of e ∈ E(H ) is (e, s)
and its superior half-edge is (e, t). Given a graph H and a spanning tree T of H ,
for any vertices u, v ∈ V(H ), we denote by [u, v]T the unique edge path in T that
connects u to v.

2.2 Space of subgroups of a countable group

Let G be an infinite countable group. Endowed with the Chabauty topology, the
set of subgroups Sub(G) of G is a closed subspace of the Cantor set {0,1}G. An
explicit basis of open sets is given by the following clopen sets:

V(O, I) = {H ∈ Sub(G),H ∩O = ∅ and I ⊆H}

for any finite subsets O, I ⊆ G.
We will make use of the following lemma, that describes the topology of some

subsets of Sub(G).
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Lemma 2.1. Let G be a countable group and let G0 be any subgroup of G. Then, for
any subgroup H0 ≤ G0, the set

{H ≤ G ∣H ∩G0 =H0}

is closed in Sub(G). If moreover the group H0 is finitely generated and has finite
index in G0, then it is also open.

Proof. One has

{H ≤ G ∣H ∩G0 =H0} = ⋂
(h,g)∈H0×G0∖H0

{H ≤ G ∣ h ∈H and g ∉H}

which is closed as an intersection of basic clopen subsets of Sub(G).
If H0 is finitely generated and has finite index in G0, let {h1, ..., hn} be a finite

generating set of H0 and let us write G0/H0 = {H0, g1H0, ..., gmH0}. We then have

{H ≤ G ∣H ∩G0 =H0} = ⋂
(i,j)∈J1,nK×J1,mK

{H ≤ G ∣ hi ∈H and gj ∉H}

which is open as a finite intersection of basic clopen sets.

Applying Cantor-Bendixson Theorem (see [Kec95, Section 6, Chapter 1] for in-
stance) to the Polish space Sub(G) leads to a unique decomposition Sub(G) =K⊔C
where C is countable and K is a closed subspace of Sub(G) without isolated points.
The set K is called the perfect kernel of G and denoted by K(G). It is the largest
closed subset of Sub(G) without isolated points, or equivalently, the set of subgroups
all of whose neighborhoods are uncountable.

If G is finitely generated, then finite index subgroups are isolated. In particular,
we get the following inclusion K(G) ⊆ Sub[∞](G). The converse inclusion is true
in the case of finitely generated free groups (see [CGLM23][Proposition 2.1] and
[AG24][Corollary 5.17]):

Proposition 2.2. Let Fr be the free group on r generators (2 ≤ r ≤ ∞). Then

• if r < ∞, then K(Fr) = Sub[∞](Fr);

• K(F∞) = Sub(F∞).

Moreover, there exists a dense orbit for the action by conjugation of Fr on K(Fr).

Remark 2.3. The key point of the proof of Proposition 2.2 is the identification of
subgroups of Fr = ⟨(ai)i∈J1,rK⟩ with coverings of the bouquet Br of r circles (which
are exactly the Schreier graphs of subgroups of Fr with respect to the generating set
{ai, i ∈ J1, rK}). More precisely, this relies on the two following facts. Let B be a
(possibly infinite) graph. Then:
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• for every covering E → B and every connected finite subgraph K ⊊ E, there
exists a covering p ∶ E′ → B whose degree is infinite and such that E′ contains a
subgraph K ′ which is isomorphic to K as a labeled graph (this allows to obtain
the aforementioned explicit description of the perfect kernel);

• for every coverings Ei → B (i ∈ N), given any connected finite subgraph Ki ⊊ Ei

(for every i ∈ N), there exists a covering p ∶ E → B whose degree is infinite
and such that E contains disjoint subgraphs (K ′i)i∈N such that K ′i and Ki are
isomorphic as labeled graphs for every i ∈ N (this allows to build a dense orbit).

This point of view will be useful in the study of the action by conjugation of a
semidirect product Zd ⋊ Fr on its perfect kernel (cf. Section 6.2).

2.3 Graphs of groups

In this section, we recall the fundamentals of Bass-Serre theory. We refer to [Ser83] for
more details. A graph of groups is an oriented graph H equipped with a collection
of vertex groups Gv, v ∈ V (H ), a collection of edge groups Ge, e ∈ E (H ) such
that Ge = Ge for every edge e ∈ E (H ) and, for u ∈ {s, t}, injective homomorphisms
ιe,u ∶ Ge ↪ Gu(e) such that ιe,s = ιe,t for every edge e.

The fundamental group of a graph of groups H is defined by the following
presentation: let us fix a spanning tree T in H . Denote by {te, e ∈ E (H )} a
generating set of the free group F∣E(H )∣ of rank ∣E (H ) ∣ and define

G = (∗v∈V(H )Gv ∗ F∣E(H )∣) /⟪(t−1e ιe,s(e)(x)teιe,t(e)(x)
−1)(e,x)∈E(H )×Ge

, (tete)e∈E(H ), (te)e∈E(T )⟫

(2.4)
The isomorphism class of the group G defined as above does not depend on the choice
of the spanning tree (cf. Proposition 20 in [Ser83], Section 5.1).

There exists a (unique up to unique isomorphism) oriented tree T , called Bass-
Serre tree of H on which G acts without inversion with quotient H and such
that there exist sections V (H ) → V (T ) and E (H ) → E (T ) (which we denote by
v → ṽ and e → ẽ respectively) of the projection π ∶ T → H satisfying the following
conditions:

Stab(ṽ) = Gv ∀v ∈ V(H ). (2.5)

Stab(ẽ) = Ge ∀e ∈ E(H ). (2.6)

More precisely (cf. [Ser83][Section 5.3]), the set of vertices of T is

V(T ) = ⊔
v∈V(H )

G/Gv,
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and its set of edges is
E(T ) = ⊔

e∈E(H )
G/Ge.

Conversely, any group action G ↷ T without inversion is obtained by this con-
struction (cf. [Ser83, Section 5]).

3 H -preactions and H -graphs

In this section we generalize the interpretation of graphs of subgroups as ”blown
up and shrunk” Schreier graphs obtained for HNN-extensions or amalgamated free
products in [FLMMS22], for Baumslag-Solitar groups in [CGMS25] and for rank 1
GBS groups in [Bon24].

This gives us a tool to approximate some subgroups of iterated HNN-extensions
and amalgamated free products, that we will apply to GBS groups.

3.1 General setting

In this section, we fix a graph of groups H endowed with a spanning tree T and
we denote by G the fundamental group of H , defined by Presentation (2.4). To
any subgroup of G, we will associate a ”H -graph”, which is a labelled graph that
satisfy some combinatorial conditions. It will reduce the problem of approximating
a subgroup of G to the one of approximating its H -graphs.

First, we introduce the notion of H -preaction of G. Informally, this is a col-
lection of partial bijections (each of these corresponding to an edge generator or an
element of a vertex group in the presentation (2.4)) such that the partial bijections
associated to generators of a vertex group Gv define a genuine Gv-action. Let us
make this definition more precise:

Definition 3.1. A H -preaction on a countable set X is a collection of (possibly
non-transitive) right Gv-actions αv defined on subsets Dv of X for every v ∈ V(H )
(i.e. morphisms αv ∶ Gv → Sym(Dv)) and of partial bijections βe for every e ∉ T
satisfying the following conditions:

• for every e ∈ E(H ) ∖ E(T ),

– dom(βe) is αs(e)(ιe,s(Ge))-stable;

– rng(βe) is αt(e)(ιe,t(Ge))-stable;

• for every e ∈ E (T ), for every g ∈ Ge and x ∈Ds(e) ∩Dt(e), one has

x ⋅ αs(e) (ιe,s(g)) = x ⋅ αt(e) (ιe,t(g)) ;
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• for every e ∈ E(H )∖E(T ), for every g ∈ Ge and x ∈ dom(βe)∩Ds(e)∩β−1e (Dt(e)),
one has

x ⋅ αs(e) (ιe,s(g)) ⋅ βe = x ⋅ βe ⋅ αt(e) (ιe,t(g)) ;

• for every vertices v,w ∈ V(H ), for every vertex u ∈ [v,w]T , one has

Dv ∩Dw ⊆Du;

• for every e ∈ E(H ) ∖ E (T ) and v ∈ V(H ), for every u ∈ [v, s(e)]T , one has

Dv ∩ dom(βe) ⊆Du.

To alleviate notations, given a H -preaction α defined on a countable set X, we
will simply denote by x ⋅ g the element x ⋅ αv(g) if x ∈ Dv, and by x ⋅ te the element
x ⋅ βe if x ∈ dom(βe).

Informally, the H -graph of a preaction α is the Schreier graph of α all of whose
Gv-orbits are shrunk to vertices labeled by the corresponding Gv-actions for every
vertex group Gv. As the isomorphism class of a transitive right action of a countable
group on a countable set X is uniquely determined by the stabilizer of any point of
X, these labels will be Gv-conjugacy classes of subgroups of Gv. For every vertex
x ⋅ Gv, x′ ⋅ Gw, we put an edge labeled e ∈ E(H ) between x ⋅ Gv and x′ ⋅ Gw iff
(s(e), t(e)) = (v,w), x ∈ dom(te) and

• either e ∈ T and x ⋅Gv ∩ x′ ⋅Gw ≠ ∅;

• or e ∉ T and xte ⋅Gv ∩ x′ ⋅Gw ≠ ∅.

Because of the fact that vertex groups need not be commutative for the moment,
we also add a label to the inferior and the superior half-edge in order to remember
”where” do the two orbits x ⋅Gv and x′ ⋅Gw (or xte ⋅Gv and x′ ⋅Gw) intersect.

We now give the formal definition:

Definition 3.2. Let α be a H -preaction of G on a countable set X. One defines
the H -graph G of α as follows :

• its vertex set is the set of Gv-orbits for every v ∈ V(H ):

V(G) = ⊔
v∈V(H )

Dv/Gv;

9



• its edge set is E(G) = E+(G) ⊔ E−(G) where

E+(G) = ⊔
e∈E+(T )

(Ds(e) ∩Dt(e)) /ιe,s(Ge)⊔ ⊔
e∈E+(H )∖E(T )

(Ds(e) ∩ t
−1
e (Dt(e))) /ιe,s(Ge)

and

E−(G) = ⊔
e∈E+(T )

(Ds(e) ∩Dt(e)) /ιe,t(Ge)⊔ ⊔
e∈E+(H )∖E(T )

(Dt(e) ∩ te (Ds(e))) /ιe,t(Ge)

with

– for every e ∈ E+(T ), for every x ∈Ds(e) ∩Dt(e):

s (xιe,s(Ge)) = xGs(e)

and
t (xιe,t(Ge)) = xGt(e)

Moreover
xιe,s(Ge) = xιe,t(Ge);

– for every e ∈ E+(H ) ∖ E(T ), for every x ∈Ds(e) ∩ t−1e (Dt(e)):

s (xιe,s(Ge)) = xGs(e)

and
t (xιe,t(Ge)) = xteGt(e)

Moreover
xιe,s(Ge) = xteιe,t(Ge);

• each vertex xGv is labeled ([StabGv(x)]Gv , v);

• for every vertex xGv, we fix an identification between xGv and the quotient
set StabGv(x)/Gv (in an equivariant way). Each edge (StabGv(x)g)ιe,s(Ge) is
labeled e and its inferior half-edge is labeled (StabGv(x)g)ιe,s(Ge); in particular

(applying this last condition to e), it is labeled (StabGv(x)g)ιe,s(Ge) at its
target.

Remark 3.3. In Item 3.2, the data of [StabGv(x)]Gv is equivalent to the data of the
Gv-action StabGv(x)/Gv ↶ Gv, or equivalently, of the Gv -action on xGv.
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Gv

i j

Ge

Figure 1: Graph of groups H defining an HNN-extension

Example 3.4. Let us consider the HNN-extension G of some group Gv over a group
Ge defined by the two inclusions i ∶ Ge ↪ Gv and j ∶ Ge ↪ Gv. It is the fundamental
group of the graph of groups defined in Figure 1.

The group G inherits the following presentation

G ≃ ⟨Gv, te ∣ t
−1
e i(g)te = j(g)⟩. (3.5)

Let us consider a H -preaction that consists of two Gv-orbits x ⋅Gv, y ⋅Gv, and
such that te sends two points of x ⋅Gv (say x,x′) that lie in two different i(Ge)-orbits
to two other points in y ⋅Gv (say y, y′) that lie in two different j(Ge)-orbits (see Figure
2).

The H -graph of the above action consists of

• two vertices, that correspond to the two Gv-orbits;

• two edges between those vertices, that correspond to the i(Ge), j(Ge)-orbits.

This graph is represented in Figure 3.
Notice that the chosen identifications required in Item 3.2 send x (resp. y) to the

coset StabGv(x)1 (resp. StabGv(y)1) of StabGv(x)/Gv (resp. StabGv(y)/Gv).

Similarly, one defines the H -graph of a subgroup H using the correpondence
between subgroups and right actions:

Definition 3.6. The H -graph of a subgroup H of G is the H -graph of the right
action of G on H/G.

Remark 3.7. As observed in [Bon24] in the case of infinite cyclic vertex and edge
groups, the data of the graph of groups of H is equivalent to its H -graph: recall
that the set of vertices of the Bass-Serre tree T associated to a graph of groups H of
fundamental group G is ⊔v∈V(H )G/Gv, and its set of edges is ⊔e∈E(H )G/Ge. Thus,
for any subgroup H of G, the set of vertices (resp. of edges) of H/T is exactly

⊔
v∈V(H )

H/(G/Gv) = ⊔
v∈V(H )

(H/G)/Gv,

11



x x ⋅ i(ge)

x′ x′ ⋅ i(ge)

y ⋅ j(ge) y

y′ ⋅ j(ge) y′

x′ ⋅ i(((Ge)))

x ⋅ i(((Ge)))

y′ ⋅ j(((Ge)))

y ⋅ j(((Ge)))

te

te

te

te

i(ge)

j(ge)

i(ge)

j(ge)

g g′

x ⋅Gv y ⋅Gv

Figure 2: Schreier graph of a H -preaction (here g, g′ ∈ Gv and ge ∈ Ge)

(resp. ⊔e∈E(H )H/(G/Ge) = ⊔e∈E(H )(H/G)/Ge)), which is exactly the set of vertices
(resp. of edges) of the H -graph of H (taking the quotient H/G amount to tak-
ing the Schreier graph of H, then taking the disjoint union over the vertices of H
amounts to ”blow it up”, and taking the quotient by every vertex (resp. edge) group
amounts to shrinking the orbits of vertex groups (resp. edge groups), which amounts
to constructing the vertices (resp. edges) of the H -graph of H).

Now we want to define an abstract notion of H -graph. To achieve this, we first
prove the following lemma, which gives a combinatorial condition on the labels of the
vertices of the H -graph of a preaction.

Lemma 3.8. Let G be the H -graph of a H -preaction α defined on a set X0. For ev-
ery E ∈ E(G), denoting by e the label of E, by ([Λ0]Gs(e) , s(e)) (resp. ([Λ1]Gt(e) , t(e)))
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([StabGv(x)]Gv , v) ([StabGv(y)]Gv , v)

e

StabGv(x)gi(Ge) StabGv(y)g
′j(Ge)

e

StabGv(x)1i(Ge) StabGv(y)1j(Ge)

Figure 3: H -graph of the H -preaction represented in Figure 2

the label of s(E) (resp. t(E)), by Λ0g0ιe,s(Ge) (resp. Λ1g1ιe,t(Ge)) the label of the
inferior (resp. superior) half-edge of E, one has

[ι−1e,s (g
−1
0 Λ0g0)]Ge

= [ι−1e,t (g
−1
1 Λ1g1)]Ge

.

Proof. For every e ∈ E(H ), let us define se = {
te if e ∉ E(T )
id otherwise

. By construction,

there exist x, y ∈X0 and g, g′ ∈ Ge such that

• StabGs(e)(x) = Λ0;

• StabGt(e)(y) = Λ1;

• x ⋅ g0ιe,s(g′)se = y ⋅ g1ιe,t(g).

Hence, denoting by X = x ⋅ g0ιe,s(g) and Y = y ⋅ g1ιe,t(g′), one has Y =Xse, thus

StabGt(e)(Y ) ∩ ιe,t(Ge) = Stabιe,t(Ge)(Y )

= Stabs−1e ιe,s(Ge)se(Xse)

= s−1e (Stabιe,s(Ge)(X)) se

= s−1e (StabGs(e)(X) ∩ ιe,s(Ge)) se

= ιe,t (ι
−1
e,s (StabGs(e)(X)))

so, taking the preimage under ιe,t ,we get

ι−1e,s(StabGs(e)(X)) = ι
−1
e,t(StabGt(e)(Y ))
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which amounts to saying that

g−1ι−1e,s (g
−1
0 Λ0g0) g = g

′−1ι−1e,t (g
−1
1 Λ1g1) g

′

which proves the statement.

Using this lemma, one can extend the notion of a H -graph as follows:

Definition 3.9. A H -graph G is a labeled graph satisfying the following conditions:

• every vertex is labeled ([Λ]Gv , v) for some v ∈ V(H ) and some subgroup Λ of
Gv;

• every edge E ∈ E(G) is labeled by an edge e ∈ E(H ) such that s(E) is labeled
(C, s(e)) (for some Gs(e)-conjugacy class C of subgroups of Gs(e)) and t(E) is
labeled (C ′, t(e)) (for some Gt(e)-conjugacy class C ′ of subgroups of Gt(e));

• the inferior half-edge of an edge labeled e with source labeled ([Λ]Gv , v) is
labeled by an element of Λ/Gv/ιe,s(Ge);

• every edge labeled e whose inferior half-edge is labeled Λ0g0ιe,s(Ge) (with Λ0 ≤
Gs(e)) and whose superior half-edge is labeled Λ1g1ιe,t(Ge) (with Λ1 ≤ Gt(e))
satisfies

[ι−1e,s (g
−1
0 Λ0g0)]Ge

= [ι−1e,t (g
−1
1 Λ1g1)]Ge

;

• inferior (resp. superior) half-edges of different edges labeled e (for some e ∈
E(H )) sharing the same source (resp. target) can’t share the same label.

Notice that a H -graph is the H -graph of a subgroup H ≤ G if and only if every
vertex labeled ([Λ]Gv , v) has exactly ∣Λ/Gv/ιe,s(Ge)∣ outgoing edges labeled e for
every edge e ∈ E(H ) satisfying s(e) = v (we call such G a saturated H -graph). In
the formalism of Bass, who introduced the right notion of coverings in the setting of
graphs of groups in [Bas93], a H -graph G is the base space of an immersion G →H
of the graph of groups H . This immersion is a covering if and only if G is saturated,
that is to say, G is the H -graph of a subgroup of G.

The three following lemmas (3.11, 3.10 and 3.14) give rise to a useful tool to ap-
proximate subgroups of G. We show that, under some conditions, an approximation
of the H -graph of a subgroup gives rise to an approximation of the subgroup itself.
The proofs of these are very similar to the ones given in the case of GBS groups of
rank 1 in [Bon24] (Lemma 3.3, Lemma 3.4 and Lemma 3.5). For the convenience of
the reader, we adapt the main ingredients of the proofs to our wider setting.
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Lemma 3.10. Let F be a finite H -graph. There exists a H -preaction whose H -
graph is F .

Lemma 3.11. Let (αi)i∈N be a collection of H -preactions whose H -graphs (Gi)i∈N
are contained in a saturated H -graph G as pairwise disjoint subgraphs such that the
quotient G/ (⊔i∈N Gi) is a tree. There exists a G-action α whose H -graph is G and
that extends αi for every i ∈ N.

The proofs of Lemma 3.11 and Lemma 3.10 rely on straightforward inductions
based on the following proposition:

Proposition 3.12. Let α0 be a H -preaction defined on a countable set X0 whose
H -graph G0 is contained in a H -graph G such that:

• V(G) = V(G0);

• E(G) = E(G0) ⊔ {E} for some edge E such that s(E), t(E) ∈ V(G0).

Then, there exists a H -preaction α whose H -graph is G. Moreover, if s(E) and
t(E) belong to two different connected components of G0 (that is two say, α0 = α1⊔α2

for some subpreactions α1 and α2, and s(E) (resp. t(E)) corresponds to a vertex
orbit for α1 (resp. t(E)), the constructed preaction α extends both α1 and α2.

Proof. We adapt Constructions A and B defined in [Bon24, Section 3]. Let e be the
label of E and let us denote by (V1, V2) ∶= (s(E), t(E)), and by (v1, v2) ∶= (s(e), t(e)).
Let ([Λi]Gvi

, vi) be the label of Vi (for i ∈ {1,2}) and let Λ1g1ιe,s(Ge) and Λ2g2ιe,t(Ge)
be the label of the inferior half-edge and of the superior half-edge of E, respectively.
One has [ι−1e,s(g

−1
1 Λ1g1)]Ge = [ι

−1
e,t(g

−1
2 Λ2g2)]Ge , i.e. there exists h ∈ Ge such that

ι−1e,s(g
−1
1 Λ1g1) = h

−1ι−1e,t(g
−1
2 Λ2g2)h. (3.13)

We distinguish two cases:

Construction A : If e ∉ E(T ), then there exist x1, x2 ∈X0 such that:

• xi ∈ dom(Gvi) for i ∈ {1,2};

• StabGvi
(xi) = Λi for i ∈ {1,2};

• x1 ⋅ g1 ∉ dom(te) and x2 ⋅ g2 ∉ rng(te).

We extend te and t−1e on a subset of X ∶=X0 by defining, for every g ∈ Ge:

(x1 ⋅ g1(ιe,s(g))) ⋅ te = x2 ⋅ g2ιe,t(hgh
−1),

which is well-defined by Equation 3.13. The resulting H -preaction is suitable.

15



Construction B : If e ∈ E(T ), then there exist x1, x2 ∈X0 such that:

• xi ∈ dom(Gvi) for i ∈ {1,2};

• StabGvi
(xi) = Λi for i ∈ {1,2};

• x1 ⋅ g1 ∉ dom(Gv2) and x2 ⋅ g2 ∉ dom(Gv1).

We let
X ∶=X0/ (x1 ⋅ g1ιe,s(g) ∼ x2 ⋅ g2ιe,t(hgh

−1) ∀g ∈ Ge)

and we let α be the H -preaction induced by α on X. As previously, it is well-defined
by Equation 3.13. By construction, the H -graph of α is G.

Finally we explain how to saturate a H -graph in our new setting.

Lemma 3.14. For every (non-saturated) H -graph G, there exists a saturated H -
graph G̃ that contains G and such that the quotient G̃/G is an infinite forest.

Proof. We argue by induction using the following construction: if V is a non-saturated
vertex labeled ([Λ0]Gv , v), whose non-saturation is witnessed by

• an edge e ∈ E(H ) with source v;

• an element g0 ∈ Gv such that there is no inferior half-edge labeled Λ0g0ιe,s(Ge)
with source V

then, denoting by w = t(e), one defines

Λ1 = ιe,t(ι
−1
e,s(g

−1
0 Λ0g0))

and one builds a new vertex W labeled ([Λ1]Gw ,w) and a new edge E labeled e with
source V and target W such that

• the inferior half-edge (E, s) is labeled Λ0g0ιe,s(Ge);

• the superior half-edge (E, t) is labeled Λ1ιe,t(Ge).
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3.2 Generalized Baumslag-Solitar groups

In this section, we will apply the tools we introduced in the previous section to GBS
groups.

A GBS group of rank d is the fundamental group of a finite graph of groups whose
vertex and edge stabilizers are isomorphic to Zd. As any injective morphism Zd → Zd

is represented by an element of Md(Z) ∩GLd(Q), a GBS group can be represented
by an oriented graph H endowed with a function which associates an integer matrix
whose determinant is non-zero to each half-edge:

M ∶ E (H ) × {s, t} → Md(Z) ∩GLd(Q)
(e,u) ↦ Me,u

and that satisfies Me,t = Me,s for every e ∈ E(H ). Up to shrinking some edges, we
can assume that the graph H is reduced, that is to say, the only edges e ∈ V(H )
one of whose labels is in GLd(Z) are loops.

Given a GBS group G defined by a graph of groups H , let us denote by T
its Bass-Serre tree and let us define the modular homomorphism as follows (cf.
[LdGZS25]): fix a vertex v ∈ V(T ). Observe that for any g ∈ G, the group Ggv ∩Gv

has finite index in Gv, hence belongs to the abstract commensurator of Gv. Define

∆
(v)
G (g) as the equivalence class of the morphism

Gv ∩Gg−1v → Gv ∩Ggv

h ↦ ghg−1
. As Gv

is isomorphic to Zd, the morphism ∆
(v)
G can be identified with a morphism ∆

(v)
G ∶ G→

GLd(Q). The definition of the modular homomorphism does not depend on the choice
of the vertex v up to conjugation by an element of GLd(Q). Practically, the image of
the modular homomorphism (based at some vertex v) is generated by the matrices
BnA−1n . . .B1A−11 for every edge path e1, ..., en labeled (A1,B1), ... ,(An,Bn) and based
at v. In particular, the modular homomorphism of a GBS group defined by a tree of
groups is trivial. A GBS group G of rank d is unimodular if Im(det ○∆G) ⊆ {1,−1}.

Example 3.15. Let us consider the GBS of rank 2 defined in Figure 4.
Let us chose the edge f as a spanning tree in the graph represented in Figure 4.

Then, the presentation of G associated to this choice is the following:

G ≃ ⟨xv, yv, xw, yw, te ∣ [xv, yv] = [xw, yw] = 1,

x7
vy
−3
v = x

−4
w y3w, x

−1
v y−3v = xwy

−9
w ,

t−1e (xvy
−2
v )te = x

−1
w y4w, t

−1
e x5

vte = x
8
wy

5
w⟩ .

The modular homomorphism is trivial on the vertex generators xv, yv, xw, yw and
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v w

(
1 5
−2 0

) (
−1 8
4 5

)e

(
7 −1
−3 −3

) (
−4 1
3 −9

)f

Figure 4: A graph of GBS

sends te to the product (
7 −1
−3 −3

) ⋅ (
−4 1
3 9

)

−1

⋅ (
−1 8
4 5

) ⋅ (
1 5
−2 0

)

−1

:

∆v ∶

G → GL2(Q)
xv, yv, xw, yw ↦ I2

te ↦ −1
390 (

1026 903
−138 −459

)

In the case where the vertex stabilizers are abelian, the definition of a H -graph
simplifies as follows. A H -graph G is then a labeled graph satisfying the following
conditions:

1. every vertex is labeled (Λ, v) for some v ∈ V(H ) and some subgroup Λ of Gv;

2. every edge E ∈ E(G) is labeled e for some e ∈ E(H ) such that s(E) is labeled
(Λ0, s(e)) (for some Λ0 ≤ Gs(e)) and t(E) is labeled (Λ1, t(e)) (for some Λ1 ≤
Gt(e));

3. every edge labeled e whose source (resp. target) is labeled (Λ0, s(e)) (resp.
(Λ1, t(e))) satisfies

ι−1e,s (Λ0) = ι
−1
e,t (Λ1) ;

4. every vertex labeled (Λ, v) has at most ∣Λ/Gv/ιe,s(Ge)∣ outgoing edges labeled
e (with s(e) = v) and at most ∣Λ/Gv/ιe,t(Ge)∣ incoming edges labeled e (with
t(e) = v).

Observe that a H -graph is the H -graph of a subgroup iff equality holds for every
vertex and edge in the last item.

Hence for a GBS group of rank d the definition of a H -graph becomes the fol-
lowing:
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Definition 3.16. Let d ≥ 1 and let H be a finite graph of groups all of whose vertex
and edge groups are isomorphic to Zd. A H -graph is a labeled graph that satisfies
the three following conditions:

1. every vertex is labeled (Λ, v) for some v ∈ V(H ) and some subgroup Λ of Zd;

2. every edge E ∈ E(G) is labeled e for some e ∈ E(H ) such that s(E) is labeled
(Λ0, s(e)) (for some Λ0 ≤ Gs(e)) and t(E) is labeled (Λ1, t(e)) (for some Λ1 ≤
Gt(e));

3. Transfer Equation every edge labeled e whose source (resp. target) is labeled
(Λ0, s(e)) (resp. (Λ1, t(e))) satisfies

(M−1e,sΛ0) ∩Zd = (M−1e,tΛ1) ∩Zd;

4. every vertex labeled (Λ, v) has at most ∣Zd/⟨Λ,Me,sZd⟩∣ incident edges labeled
e (with s(e) = v) and at most ∣Zd/⟨Λ,Me,tZd⟩∣ incident edges labeled e (with
t(e) = v);

It is saturated iff equality holds for vertex and edge in the last item.

Example 3.17. Let A = (
2 0
0 2
) and B = (

1 1
1 4
). Let us defined the GBS group G0

as the fundamental group π1(H0) of following graph of groups defined in Figure 5.

A I2

A B

Figure 5: The graph of groups H0.

The labeled graph represented in Figure 6 is a (non-saturated) H0-graph.
We will focus on non-amenable GBS groups. They are characterized by the fol-

lowing proposition:

Proposition 3.18. Let G be a GBS group defined by a reduced graph of groups H .
Then G is amenable iff H is a single loop one of whose labels is in GL2(Z), or a
single edge e with s(e) ≠ t(e) both of whose labels have determinant ±2.
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(
1
0
)Z

(
1
0
)Z

(
1
1
)Z (

2
0
)Z

Figure 6: An example of a H0-graph.

Proof. Let us assume that H consists of a single loop e labeled (A,B) with B ∈
GLd(Z). Denoting by M ∶= AB−1, the group G is isomorphic to Z[M,M−1]Zd ⋊ Z,
where Z acts on Z[M,M−1]Zd multiplication by M. As an extension of an abelian
group by an abelian group, G is amenable.

Now let us assume that H consists of an edge e which is not a loop such that
the labels A and B of e have determinant ±2. The Bass-Serre tree T of H is a
bi-infinite line on which G acts with kernel N isomorphic to Zd. The action of G/N
on T has also a single orbit of edges, the stabilizer of any edge is trivial, and, as
A and B have determinant ±2, the stabilizer of any vertex is isomorphic to Z/2Z.
Thus, Bass-Serre theory tells us that G/N is isomorphic to (Z/2Z) ∗ (Z/2Z), which
is virtually isomorphic to Z. Hence, N and G/N are amenable, so G is amenable.

Conversely, let us assume that H is neither a single loop one of whose labels is in
GL2(Z), nor a single edge e with s(e) ≠ t(e) both of whose labels have determinant
±2. Then the action of G on its Bass-Serre tree T is of general type, thus G contains
a free group on two generators. In particular, G is non-amenable.

4 An equivalence relation on Sub(Zd)

In this section, we assume that G is a non-amenable GBS group which is not the
fundamental group of a graph of groups defined by a single vertex and a collection of
loops labeled by invertible integer matrices. In other words, G is neither amenable
nor isomorphic to a semidirect product Zd ⋊ Fr.

First, we introduce an equivalence relation that will give the decomposition of
Theorem 1.2.

Definition 4.1. Let Λ0 and Λ1 be two subgroups of Zd. We say that Λ0 and Λ1
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are H -equivalent with respect to a vertex v ∈ V(H ) (denoted w.r.t. v) if there
exists a connected H -graph that contains two vertices labeled (Λ0, v) and (Λ1, v),
respectively.

Lemma 4.2. Suppose that there exists a H -path E1, ...,Er that connects two vertices
labeled (Λ0, v) and (Λ1,w), respectively. Then, for every edges e, f ∈ E(H ) satisfying
s(e) = v and t(f) = w, there exists a H -path of type e, ..., e1, ..., er, ..., f that connects
two vertices labeled (Λ0, v) and (Λ1,w) and that contains E1, ...,Er as a subpath.

Proof. Let E1, ...,Er be a reduced H -path labeled e1, ..., er (with ei ∈ E(H ) for every
i ∈ J1, rK) such that

• s(E1) is labeled (Λ0, v);

• t(Er) is labeled (Λ1,w).

We first prove that there exists a reduced H -path labeled e, ..., e1, ..., er that connects
a vertex labeled (Λ0, v) to a vertex labeled (Λ1,w), and that contains E1, ...,Er as a
subpath. If e = e1, then the edge path E1, ...,Er is suitable.

Otherwise, let us denote by (A,B) = (Me,s,Me,t) and v′ = t(e). Let us define

Λ′0 = B(A
−1Λ0 ∩Zd).

By construction, (Λ0, v) and (Λ′0, v
′) satisfy the Transfer Equation 3

A−1Λ0 ∩Zd = B−1Λ′0 ∩Zd.

Hence there exists a H -graph which consist of a single edge E′0 labeled e connecting
a vertex V0 labeled (Λ0, v) to a vertex V1 labeled (Λ′0, v

′).

Case 1: Let us first assume that ∣det(B)∣ ≥ 2. As ∣det(B)∣ ≥ 2 and Λ′0 ⊆ BZd,
one has

∣Zd/⟨BZd,Λ′0⟩∣ = ∣det(B)∣ ≥ 2.

Hence the labeled graph which consists of

• the edge E′0;

• an edge E′1 labeled e connecting V1 to a vertex V2 labeled (Λ0, v)

is a H -graph of type e, e that connects a vertex labeled (Λ0, v) to a vertex labeled
(Λ0, v). Finally, as e ≠ e1 by assumption the labeled graph obtained by the concate-
nation of the H -paths E′0,E

′
1 and E1, ...,Er is a H -graph of type e, e, e1, ..., er that

connects a vertex labeled (Λ0, v) to a vertex labeled (Λ1,w) as required.
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Case 2 : Otherwise, ∣det(B)∣ = 1. In particular, the graph H being reduced, e
is a loop. We distinguish two subcases:

Subcase 2.1: There exists an edge f ≠ e such that ∣det(Mf,t)∣ ≥ 2. Hence we
can apply Case 1 to obtain a H -path E′1,E

′
2 of type f, f that connects a vertex

labeled (Λ′0, v) to a vertex labeled (Λ′0, v). As f ≠ e and (Λ0, v) and (Λ′0, v
′) satisfy

the Transfer Equation 3, the labeled graph which consists of

• the concatenation of the H -path E′0 with the H -path E′1,E
′
2;

• an edge E′3 labeled e with source t(E′2) and target a new vertex labeled (Λ0, v)

is a H -graph. As e ≠ e1, we can concatenate the H -path E′0,E
′
1,E

′
2,E

′
3 and the H -

path E1, ...,Er to obtain a H -path labeled e, f, f , e, e1, ..., er that connects a vertex
labeled (Λ0) to a vertex labeled (Λ1,w).

Subcase 2.2: Otherwise, H consists of a collection of at least two loops based
at a single vertex such that every label (except possibly A) is in GLd(Q). As G is not
a semidirect product Zd ⋊ Fr, one has necessarily ∣det(A)∣ ≥ 2. Let f ∈ H ∖ {e, e}.
Subcase 2.1 delivers a H -path E′1,E

′
2,E

′
3,E

′
4 of type f, e, e, f that connects a vertex

labeled (Λ′0, v) to a vertex labeled (Λ′0, v). As f ≠ e, the H -graph which consists of

• the concatenation of the H -path E′0 with the H -graph E′1,E
′
2,E

′
3,E

′
4;

• an edge E′5 of type e that connects t(E′4) to a new vertex labeled (Λ0, v)

is a H -path. As e ≠ e1, we can concatenate the H -path E′0,E
′
1,E

′
2,E

′
3,E

′
4,E

′
5 and the

H -path E1, ...,Er to obtain a H -path labeled e, f, e, e, f , e, e1, ..., er that connects a
vertex labeled (Λ0) to a vertex labeled (Λ1,w).

Hence we proved that there exists a H -path labeled e, ..., e1, ..., er that connects
a vertex labeled (Λ0, v) to a vertex labeled (Λ1,w). Using this result on the reverse
path (that connects a vertex labeled (Λ1,w) to a vertex labeled (Λ0, v)) leads to a
H -path of type e, ..., e1, ..., er, ..., f that connects a vertex labeled (Λ0, v) to a vertex
labeled (Λ1,w), which leads to the conclusion.

Corollary 4.3. H -equivalence with respect to a prescribed vertex v is an equivalence
relation.

More precisely, the following holds: if E1, ...,Er (resp. F1, ..., Fs) is a H -path
that connects a vertex labeled (Λ0, v) (resp. (Λ1, v)) to a vertex labeled (Λ1, v) (resp.
(Λ2, v)), then there exists a H -path that contains E1, ...,Er−1 and F2, ..., Fs as disjoint
(labeled) subpaths.
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Proof. Let Λ0,Λ1,Λ2 ≤ Zd.
As the empty path is a H -path that connects any vertex labeled (Λ0, v) to itself,

Λ0 is H -equivalent to itself (w.r.t. v).
If Λ0 is H -equivalent to Λ1 w.r.t. v, then there exists a reduced H -path E1, ...,Er

with source labeled (Λ0, v) and target labeled (Λ1, v). The reversed H -path Er, ...,E1

has its source labeled (Λ1, v) and its target labeled (Λ0, v). Thus, Λ1 is H -equivalent
to Λ0 w.r.t. v.

Let us assume that Λ0 is H -equivalent to Λ1 w.r.t. v and that Λ1 is H -equivalent
to Λ2 w.r.t. v Let E1, ...,Er be a reduced H -path of type e1, ..., er with source labeled
(Λ0, v) and target labeled (Λ1, v) and let F1, ..., Fs be a reduced H -path of type
f1, ..., fs with source labeled (Λ1, v) and target labeled (Λ2, v).

Case 1: Let us assume that f1 ≠ er Then, the concatenation of of these H -paths
delivers a H -path with source labeled (Λ0, v) and target labeled (Λ2, v).

Case 2: Otherwise, let us denote by e = er = f1.

Subcase 2.1: First, we assume that there exists an edge g ≠ er such that
t(g) = v. By Lemma 4.2, there exists a H -path E′1, ...,E

′
t of type e1, ..., er, ..., g

that contains E1, ...,Er and that connects a vertex labeled (Λ0, v) to a vertex labeled
(Λ1, v). As g ≠ f1, the concatenation of the H -paths E′1, ...,E

′
t and F1, ..., Fs delivers

a H -path with source labeled (Λ0, v) and target labeled (Λ2, v).

Subcase 2.2: Now we assume that e is the unique edge with target v.
Notice that in this case, e can’t be a loop. If r = 0 or s = 0, we’re done. Hence we
assume that r, s ≥ 1. Let u = s(e) and (A,B) ∶= (Me,s,Me,t). Let (Λ̃1, u) and (Λ̃2, u)
be the labels of s(Er) and t(F1), respectively. By the Transfer Equation 3 we have

A−1Λ̃1 ∩Zd = B−1Λ1 ∩Zd

= A−1Λ̃2 ∩Zd.

Let us define
Λ′1 = B(A

−1Λ̃1 ∩Zd).

As e is not a loop and H is reduced, one has ∣det(B)∣ ≥ 2. Hence the labeled graph
which consists of

• an edge E′0 labeled e with source labeled (Λ̃1, u) and target V labeled (Λ′1, v);

• an edge E′1 labeled e with source V and target a vertex labeled (Λ̃2, u)
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is a H -graph. Hence the concatenation of the H -path E1, ...,Er−1, the H -path
E′0,E

′
1 and of the H -path F2, ..., Fs delivers a H -path that connects a vertex labeled

(Λ0, v) to a vertex labeled (Λ2, v).
In any case we proved that Λ0 is H -equivalent to Λ2 w.r.t. v.

Lemma 4.4. Let Λ0 be a subgroup of Zd and v ∈ V(H ). There exists a finite H -
graph

• that is not simply connected;

• that contains a vertex labeled (Λ0, v);

• that contains at least two non-saturated vertices.

Proof. We distinguish two cases:

Case 1: Assume that there exists a loop e0 ∈ E(H ) based at v. Let us
consider a H -path E1,E2 labeled e0, e0 such that

• the vertex t(E1) = s(E2) is labeled (Λ0, v);

• the vertex s(E1) is labeled (Λ1, v), where Λ1 = Me,s (M−1e,tΛ0 ∩Zd) (so that Λ1,
Λ0 and e satisfy the Transfer Equation (3);

• the vertex t(E2) is labeled (Λ2, v), where Λ2 = Me,t (M−1e,sΛ0 ∩Zd) (so that Λ0,
Λ2 and e satisfy the Transfer Equation (3).

We apply Lemma 4.2 to get a H -path labeled e0, ..., e0 with source t(E2) and target
s(E1).

Subcase 1.a: If there exists f0 ∈ E(H ) ∖ {e0, e0}, then the vertices t(E2) and
s(E1) are neither saturated relatively to f0 nor to f0, which leads to the conclusion
in this particular case.

Subcase 1.b: Otherwize, as G is non-amenable, one has ∣det(Me,s)∣ ≥ 2 and
∣det(Me,t)∣ ≥ 2 by Proposition 3.18. In particular:

• as s(E1) is labeled by a subgroup Λ1 of Me,szd, one has

∣Zd/ ⟨Λ1,Me,sZd⟩∣ = ∣det(Me,s)∣

≥ 2,

so, as E1 has a single outgoing edge labeled e, the vertex E1 is non-saturated
relatively to e;

• likewise, the vertex t(E2) is non-saturated relatively to e.
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Case 2: Otherwise, we fix an edge e0 ∈ E(H ) with source v such that
w ∶= t(e0) ≠ v. In particular, the graph of groups H being reduced, denoting by
(A,B) ∶= (Me0,s,Me0,t), one has ∣det(A)∣ ≥ 2 and ∣det(B)∣ ≥ 2. Let us define a
H -path E1,E2,E3,E4,E5,E6,E7,E8 as follows:

• E1, E3, E5, E7 are labeled e0 and E2, E4, E6, E8 are labeled e0;

• s(E1) is labeled (Λ0, v);

• the vertices t(E1), t(E3), t(E5) and t(E7) are all labeled (B(A−1Λ0 ∩Zd), v);

• the vertices t(E2), t(E4), t(E6) and t(E8) are labeled (Λ0 ∩AZd, v).

Notice that at least four vertices are non-saturated relatively to some edge ê ∈ E(H ).
Indeed, by Proposition 3.18, as G is non-amenable and H is reduced:

• either ∣det(A)∣ > 3. In this case, the vertices t(E2), t(E4), t(E6) and t(E8) are
non-saturated relatively to e0;

• or ∣det(B)∣ ≥ 3. In this case, t(E1), t(E3), t(E5) and t(E7) are non-saturated
relatively to e0;

• or there exists an edge f0 ≠ e0 with source v. In this case, the vertices t(E2),
t(E4), t(E6) and t(E8) are non-saturated relatively to f0;

• or there exists an edge f0 ≠ e0 with target w. In this case, t(E1), t(E3), t(E5)
and t(E7) are non-saturated relatively to f0.

In any case, denoting by V1, V2, V3, V4 four non-saturated vertices relatively to some
edge ẽ, Lemma 4.2 delivers a H -graph C which consists of

• the H -path E1, ...,E8 as a subgraph;

• another reduced H -path F1, ..., Fr of type ê, ..., ê with source V1 and target V2.

The vertices V3 and V4 are non-saturated relatively to ê in C. Hence C is suitable.

5 Perfect kernel of non-amenable GBS groups

The goal of this section is to give an explicit description of the perfect kernel in the
case where the GBS group G is non-amenable, i.e. is defined neither by a single
loop with at least one invertible matrix nor by a segment with two matrices having
determinant ±2.

We start with the following lemma, that gives an inclusion in a more general
setting:
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Lemma 5.1. Let G be the fundamental group of a finite graph of groups H such
that, for every v ∈ V(H ), the group Gv is noetherian (i.e. every subgroup of Gv is
finitely generated (e.g. the Gv’s are finitely generated abelian groups)). Let us denote
by T the Bass-Serre tree of H . Then

K(G) ⊆ {H ≤ G ∣H/T is infinite}.

Proof. Let H be a subgroup of G whose graph of groups H/T is finite. Let us show
that under the assumptions of the lemma, the set

Ω = {H ′ ≤ G,H ≤H ′}

is a countable neighborhood of H in Sub(G).
First notice that every element of Ω has a finite graph of groups. In particular,

any element of Ω is finitely generated: denoting by K its graph of groups, Bass-Serre
theory tells us that it is generated by a finite number of subgroups of Gv’s (one per
each vertex of K , each of these being finitely generated by noetherianity of the Gv’s),
and by one element per edge of K . In particular:

• as H belongs to Ω, it is finitely generated so Ω is an open neighborhood of H;

• Ω is included in the subset of finitely generated subgroups, hence is countable.

This proves that H has a countable neighborhood, thus H ∉ K(G).

Now we prove Theorem 1.1:

Theorem 5.2. Let G be a non-amenable GBS group defined by a reduced graph of
groups H and let T be the associated Bass-Serre tree. Then

K(G) = {H ≤ G ∣H/T is infinite}.

Proof. By Lemma 5.1 and Remark 3.7, it suffices to show that any subgroup H of G
whose H -graph G is infinite belongs to K(G). Let us fix v ∈ V(H ). Let us denote
by α the associated H -preaction. Let β be a subpreaction of α whose H -graph is a
finite subgraph K of G. By assumption, K has a vertex V0 labeled (Λ0, v0) for some
Λ0 ≤ Zd and some v0 ∈ V (H ), which is not saturated relatively to some edge e0 with
source v0. By Lemma 3.14, there exists a H -graph G0 that contains K and such
that the quotient G0/K is an infinite forest. Hence, by Lemma 3.11, there exists a
H -preaction α0 that extends β and whose G-graph is G0.

Let us first assume that H does not consist of a single vertex and a collection
of loops labeled by matrices in GLd(Z). By Lemma 4.4, there exists a non-simply
connected finite H -graph C that contains
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• a vertex labeled (Λ0, v);

• two vertices V and W labeled (v1,Λ1) and (v2,Λ2) that are non-saturated
relatively to some edges denoted by e, f , respectively.

By Lemma 4.4, C is the H -graph of a H -preaction γ. Lemma 4.2 delivers a H -path
P of type e0, ..., e that connects V0 to V . The vertex W is non-saturated relatively to
f in the H -graph K ′ ∶=K ∪P ∪ C. By Lemma 3.14, there exists a H -graph G1 that
contains K ′ and such that the quotient G1/K ′ is a forest. Hence, by Lemma 3.11,
there exists a H -preaction α1 that extends both β and γ and whose H -graph is
G1. As G0 and G1 are non-isomorphic (because they don’t share the same homotopy
type), the (saturated) H -preactions α0 and α1 both extend β and the associated
subgroups of G are different.

Otherwise, our group G is of the form Zd ⋊Fr (where r ≥ 2 denotes the number of
loops) and each generator of Fr acts on Zd by multiplication by an invertible integer
matrix. Denoting by π ∶ G = Zd ⋊ Fr → Fr the canonical surjection, every subgroup
of G is fully determined by its intersection Λ0 = Λ ∩ Zd with Zd, its image π(Λ) ≤ Fr

under π satisfying
x ⋅Λ0 = Λ0 ∀x ∈ π(Λ)

and, given a basis (ai)i∈I (the set I being finite or countable) of π(Λ), elements
(ui, ai) ∈ Λ for every i ∈ I. Notice that in this case, the Bass-Serre tree of G is the
Cayley graph of Fr with respect to the standard generating set, and that for any
subgroup H of G, the quotient graph H/T is infinite iff π(H) ∈ Sub[∞](Fr). One
distinguishes two cases:

1. Let us first assume that rk(Λ0) = d. Let us denote by (A,B) = (Me0,s,Me0,t),
let us consider an edge f0 ≠ e0 and let us write (C,D) = (Mf0,s,Mf0,t). As the
subgroup of SL2(Z) generated by DC−1 acts on the (finite) set of lattices of
determinant ±det(Λ1), there exists an integer k ∈ N∗ satisfying

(DC−1)kΛ0 = Λ0

In particular, there exists a H -cycle C = E1, ...,Ek all of whose edges are of
type f0 such that s(Ei) is labeled (s(e0), (DC−1)iΛ0) for every i ∈ J1, kK. As
no vertex of C is saturated relatively to e0, Lemma 4.2 delivers a H -path P of
type e0, ..., e0 that connects V0 to a vertex V of C. Any other vertex of C is not
saturated relatively to e0 in K ′ ∶= K ∪ P ∪ C. Hence we can conclude as in the
previous case.

2. If rk(Λ0) < d, let us write Λ0 in its Smith normal form:

Λ0 = Pdiag(d1, ..., dr,0..., .0)Zd
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(with P ∈ GLd(Z), r < d and di∣di+1 for every i ∈ J1, r − 1K). For every N ∈ N,
define

Λ
(N)
0 = Pdiag(d1, ..., dr,N

r

∏
i=1

di, ...,N
r

∏
i=1

di)Zd

so that

• every matrix stabilizing the subgroup Λ0 also stabilizes Λ
(N)
0 (in particular,

Λ
(N)
0 is π(Λ)-stable);

• the sequence (Λ
(N)
0 )

N∈N
tends to Λ0 in Sub(Zd) as N tends to +∞.

Moreover, as (ai)i∈I is a free basis of ⟨ai, i ∈ I⟩, one has

(Zd × 1) ∩ ⟨(ui, ai), i ∈ I⟩ = {1}.

This implies that the sequence of subgroups

Λ̃N = ⟨Λ
(N)
0 , (ui, ai)i∈I⟩

= Λ
(N)
0 ⋊ ⟨(ui, ai)i∈I⟩

converges to Λ (non-trivially, because Λ̃N ∩ Zd = Λ
(N)
0 ). As π(Λ̃N) = π(Λ), the

H -graphs of Λ̃N and Λ have isomorphic skeletons (in particular, the subgroups
Λ̃N have infinite H -graphs).

Remark 5.3. Notice that we didn’t make use of the cocompactness of the action
G↷ T . Thus, Theorem 5.2 extends to a larger class of groups that incluse GBS groups
of rank d, i.e. the class of non-amenable groups acting (non necessarily cocompactly)
on an oriented tree with vertex and edge stabilizers isomorphic to Zd. In particular, in
the case of a non-cocompact action on the Bass-Serre tree, the perfect kernel consists
of the whole set of subgroups Sub(G).

The following corollary gives a class of GBS groups that satisfy the equality
K(G) = Sub[∞](G). Recall that in rank 1, the authors of [CGMS25] and [Bon24]
proved that this equality was true for non-unimodular GBS groups only. Let v be a
vertex of H and recall that the modular homomorphism ∆

(v)
G based at v is defined

by the following data:

• ∆
(v)
G is trivial on the vertex groups;
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• for every edge generator te, denoting by e1, ..., er the unique reduced edge path
in T with source v and target s(e), and by er+1, ...es the unique reduced edge
path in T with source t(e) and target v, one has

∆
(v)
G (te) =Mes,tM

−1
es,s . . .Me1,tM

−1
e1,s.

Corollary 5.4. Let G be a non-amenable and non-unimodular GBS group satisfying
the following property: for every non-trivial infinite index subgroup Λ0 ∈ Sub[∞](Zd),
the subgroup

{g ∈ G ∣∆
(v)
G (g) ⋅Λ0 is commensurable to Λ0}

has infinite index in G. Then

K(G) = Sub[∞](G).

Remark 5.5. If Λ0 is trivial or has finite index in Zd, then ∆
(v)
G (g) ⋅Λ0 is commen-

surable to Λ0 for every g ∈ G.

Before proving Corollary 5.4, we give an explicit example of a GBS group G of
rank 2 whose perfect kernel consists of the set of infinite index subgroups of G. Let

us define A = (
2 2
2 4
) and B = (

1 0
0 2
) and let us define G = π1(H ) as the fundamental

group of the graph of groups defined in Figure 7. In other words, G is defined by the
following presentation:

G ≃ ⟨x, y, t ∣ xy = yx, t−1x2y2t = x, t−1x2y4t = y2⟩ .

e

A B

Figure 7: The graph of groups H .

The image of the modular homomorphism ∆G is the subgroup of GL2(Q) gener-

ated by B−1A = (
2 2
1 2
). Hence Im(det ○∆G) = 2Z, thus G is not unimodular. Notice

that SpecR(B
−1A) = {2 +

√
2,2 −

√
2}, so SpecR((B

−1A)n) = {(2 +
√
2)

n
, (2 −

√
2)

n
}

for every n ∈ Z. Thus, for any n ∈ Z∖{0}, one has SpecQ((B
−1A)n) = ∅. In particular,

for every u ∈ Q2 ∖ {0}, the set

{(B−1A)nQu,n ∈ Z}
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is infinite, up to commensurability. Hence, by Corollary 5.4, one hasK(G) = Sub[∞](G).
Now let us prove Corollary 5.4. To begin with, we prove the following lemma:

Lemma 5.6. Let H be a subgroup of G and let us denote by G its H -graph. Let v ∈
V(H ) and let (v,Λ0) be the label of a vertex V0 of G. Then, up to commensurability:

{∆
(v)
G (g) ⋅Λ0 ∣ g ∈ G} = {Λ1 ≤ Zd ∣ ∃a vertex V ∈ V(G) labeled (Λ1, v)}

= {Λ1 ≤ Zd ∣ Λ1 is H -equivalent to Λ0 w.r.t. v.}

Proof. Let us prove that

{∆
(v)
G (g) ⋅Λ0 ∣ g ∈ G} ⊆ {Λ1 ≤ Zd ∣ ∃a vertex V ∈ V(G) labeled (Λ1, v)}.

Let g ∈ G. Let us consider a cycle e1, ..., er based at v in H and elements gi ∈ Gs(ei)
for every i and gr+1 ∈ Gs such that

g = g1 ⋅ se1 ⋅ g2... ⋅ ser ⋅ gr+1

(where sei = tei if ei ∉ T and 1 otherwise). Denoting by (Ai,Bi) the label of ei for
every i ∈ J1, rK, one has:

∆
(v)
G (g) = BrA

−1
r . . .B1A

−1
1 . (5.7)

Let us consider an edge path E1, ...,Er based at V0 and labeled e1, ...er in G. For
every i ∈ J1, rK, let (Λi, t(ei)) be the label of t(Ei). By the Transfer Equation 3, we
get

A−1i Λi−1 ∩Zd = B−1i Λi ∩Zd

which implies that
A−1i Λi−1 ⊗Qd = B−1i Λi ⊗Qd.

Thus
Λr ⊗Qd = BrA

−1
r . . .B1A

−1
1 Λ0 ⊗Qd (5.8)

which implies, with Equation 5.7, that Λr is commensurable to ∆
(v)
G (g) ⋅Λ0.

If there exists a vertex V ∈ V(G) labeled (Λ1, v), then Λ1 is H -equivalent to Λ0

w.r.t. v by connectedness of G. This proves that

{Λ1 ≤ Zd ∣ ∃a vertex V ∈ V(GΛ) labeled (Λ1, v)}

⊆ {Λ1 ≤ Zd ∣ Λ1 is H -equivalent to Λ0 w.r.t. v}.

Finally, let us prove that

{Λ1 ≤ Zd ∣ Λ1 is H -equivalent to Λ0 w.r.t. v} ⊆ {∆
(v)
G (g) ⋅Λ0, g ∈ G}
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up to commensurability. Let Λ1 be a subgroup which is H -equivalent to Λ0 w.r.t. v.
Let us consider a H -path E1, ...,Er labeled e1, ..., er whose source is labeled (Λ0, v)
and whose target is labeled (Λ1, v). For i ∈ J1, rK, let us denote by (Γi, s(ei)) the
label of s(Ei) (hence Γ1 = Λ0). By the Transfer Equation 3, denoting by (Ai,Bi) the
label of ei in H we get, as previously

Λ1 ⊗Qd = BrA
−1
r . . .B1A

−1
1 Λ0 ⊗Qd.

Thus, denoting by g = se1 ...ser (where sei = tei if ei ∉ T and 1 otherwise), one has:

Λ1 ⊗Qd =∆
(v)
G (γ) ⋅Λ0 ⊗Qd,

which proves that Λ1 is commensurable to ∆
(v)
G (g) ⋅Λ0.

Proof of Corollary 5.4. Let H be a subgroup of G whose graph of groups is finite.
Let us show that H has finite index under the assumptions of the corollary. Let G be
the H -graph of H. Let us denote by (Λ0, v) the label of a vertex of G. By Lemma

5.6, the orbit of the commensurability class of Λ0 under the action of Im (∆
(v)
G ) is

finite. Hence its stabilizer

{g ∈ G ∣∆
(v)
G (g) ⋅Λ0 is commensurable to Λ0}

has finite index in G. This implies that

• either Λ0 has finite index in Zd;

• or Λ0 = 0.

Let us assume by contradiction that Λ0 = {0}. By commensurability of the vertex
stabilizers, this is equivalent to

H ∩Gw = {1} for every vertex w ∈ V(H )

(or equivalently, all the labels of the vertices of G are trivial).

As the image of the morphism ∣det ○∆
(v)
G ∣ is non-trivial, there exists a (reduced)

cycle of edges e1, ..., en in H based at v and satisfying

∣
∏

n
i=1 det(Ai)

∏
n
i=1 det(Bi)

∣ ≠ 1

Let ni be the number of vertices of G labeled s(ei). Every vertex labeled s(ei) (resp.
t(ei)) has ∣det(Ai)∣ (resp. ∣det(Bi)∣) outgoing (resp. incoming) edges labeled ei.
Hence the number of edges labeled ei in G is

ni∣det(Ai)∣ = ni+1∣det(Bi)∣.
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Combining these equalities for i = 1, ..., n, we get

n

∏
i=1
∣det(Ai)∣ =

n

∏
i=1
∣det(Bi)∣

hence a contradiction. Thus, Λ0 has finite index in Gs(e1). By commensurability
of the vertex stabilisers, this implies that H ∩ Gw has finite index in Gw for every
w ∈ V(H ) which implies that H/G is finite (because G is also finite).

Using Theorem 5.2, we finally deduce the equality

K(G) = Sub[∞](G).

Remark 5.9. If G is a non-unimodular GBS group such that every element of the
image of the modular homomorphism ∆

(v)
G is irreducible (as a Q-linear endomorphism

of Qd), then the assumptions of Corollary 5.4 are satisfied. Let us explain why. As

G is non-unimodular, there exists g ∈ G such that ∣det (∆
(v)
G (g))∣ ≠ 1. In particular,

∆
(v)
G (g) has infinite order, hence Im (∆

(v)
G ) is infinite. Now assume by contradiction

that there exists a non-trivial infinite index subgroup Λ0 of Zd such that the subgroup

{g ∈ G ∣∆
(v)
G (g) ⋅Λ0 is commensurable to Λ0}

has finite index in G. Equivalently, the orbit of the commensurability class of Λ0

under the action of Im (∆
(v)
G ) is finite, so by the piegonhole principle, there exists

a non-trivial element ∆
(v)
G (g) ∈ Im (∆

(v)
G ) such that ∆

(v)
G (g) ⋅ (Λ0 ⊗Q) = Λ0 ⊗ Q. In

particular, Λ0 ⊗Qd is a non-trivial subspace of the Q-vector space Qd which is stable
under ∆

(v)
G (g), which contradicts the assumption made on G.

6 A dynamical partition of the perfect kernel

The goal of this section is to extend the decomposition of the perfect kernel obtained
in [CGMS25] and in [Bon24] for non-amenable GBS groups of rank 1.

6.1 Case where G is not a semidirect product Zd ⋊ Fr

In this section, we assume that G is not a semidirect product Zd⋊Fr, i.e. H does not
consist of a single vertex with a collection of loops all of whose labels are in GLd(Z).
This allow us to make use of the equivalence relation on Sub(Zd) defined in 4.
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Let us fix a vertex v ∈ V(H ). We identify Gv with Zd. Let us denote by ≃ the
H -equivalence relation with respect to v and by πv ∶ Sub(Zd) → Sub(Zd)/ ≃ the
canonical projection. Notice that the rank is constant on each fiber of πv. We have
the following statement:

Proposition 6.1. The set Sub(Zd)/ ≃ is infinite countable.

Proof. As Sub(Zd) is countable, the set Sub(Zd)/ ≃ is also countable. Let us show
that it is infinite. Let us define the finite subset PH of prime numbers

PH = {p ∈ P ∣ there exists an edge e ∈ E(H ), p ∣ det(Me,t)}.

Let us define

δ ∶
L(Zd) → Z
Λ ↦ ∏p∉PH

p∣det(Λ)∣p
.

The image of δ is exactly the set of integers which are divisible by no element of PH ,
hence is infinite. Let us show that δ is constant on the fibers of πv, i.e. that we have
a factorization

L(Zd)
δ //

πv

%%

δ(Z)

L(Zd)/ ≃

δ

OO

which will imply that L(Zd)/ ≃ is infinite (hence Sub(Zd)/ ≃ is infinite).
By a straightforward induction on the length of a H -path, it suffices to prove

that for any H -edge labeled e ∈ E(H ) with source labeled (Λ0, s(e)) and target
labeled (Λ1, t(e)), one has δ(Λ0) = δ(Λ1). Let E be such an edge. By the Transfer
Equation 3, denoting by (A,B) = (Me,s,Me,t), one has

A−1Λ0 ∩Zd = B−1Λ1 ∩Zd.

Let p ∈ P ∖ PH . We have

det(Λ0 ∩AZd)

det(A)
=
det(Λ1 ∩BZd)

det(B)
,

hence, as p ∤ det(A) and p ∤ det(B):

∣det(Λ0 ∩AZd)∣p = ∣det(Λ1 ∩BZd)∣p. (6.2)

From det(A)Λ0 ≤ Λ0 ∩AZd ≤ Λ0, we get

det(Λ0) ∣ det(Λ0 ∩AZd) ∣ det(Λ0)(det(A))
d.
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Thus, as p ∤ det(A):
∣det(Λ0)∣p = ∣det(Λ0 ∩AZd)∣p.

Likewise
∣det(Λ1)∣p = ∣det(Λ1 ∩BZd)∣p,

so by Equation 6.2 we finally get

∣det(Λ0)∣p = ∣det(Λ1)∣p.

As this is true for any p ∉ PH , this implies that

δ(Λ0) = δ(Λ1)

as required.

Let us define the H -phenotype with respect to v as the following function:

PhH ,v ∶
Sub(G) → Sub(Zd)/ ≃

H ↦ πv(H ∩Gv)
.

Proposition 6.3. The H -phenotype PhH ,v is surjective and invariant under con-
jugation by any element of G.

Proof. The surjectivity of PhH ,v results from the surjectivity of πv and of the function
Sub(G) → Sub(Gv)

H ↦ H ∩Gv
.

Let H be a subgroup of G and g ∈ G. Let Λ0 ∶=H∩Gv ≤ Zd and Λ1 ∶= gHg−1∩Gv ≤
Zd. Let G be the H -graph ofH. By definition, there exist two vertices labeled (Λ0, v)
and (Λ1, v) in G. Hence, by connectedness of G, one has πv(Λ0) = πv(Λ1).

As the group Gv acts non-cocompactly on the Bass-Serre tree T , any subgroup
of Gv lies in the perfect kernel K(G) by Theorem 5.2. In particular, the restriction
K(G) → Sub(Gv)/ ≃
H ↦ πv(H ∩Gv)

remains surjective and invariant under conjugation.

This function leads to a dynamical partition of the perfect kernel

K(G) = ⊔
Λ≤Zd

K(G) ∩Ph−1H ,v(πv(Λ)). (6.4)

By the previous remark and Proposition 6.1, this partition is infinite countable. Now
we are able to prove Theorem 1.2 which gives a description of the dynamics induced
on each piece of the aforementioned decomposition:
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Theorem 6.5. For any Λ0 ≤ Zd, there exists a dense orbit in Ph−1H ,v(πv(Λ0))∩K(G).

Proof. Let Λ ≤ Zd and let (Hi)i∈N ∈ (K(G) ∩Ph
−1
H ,v(πv(Λ)))

N
be the sequence of

finitely generated subgroups lying in K(G) ∩ Ph−1H ,v(πv(Λ)). For i ∈ N, let αi be the
H -action associated to Hi and let Gi be the H -graph of αi. Let βi be a subpreaction
of αi that corresponds to the same subgroup as αi and whose H -graph Ki is finite
(legit, becauseHi is finitely generated). AsHi ∈ K(G), Theorem 5.2 implies that there
exists a vertex Vi ∈ V(Ki) labeled (Λi, vi) which is non-saturated relatively to some
edge ei ∈ E(H ). Up to extending βi, one can assume that vi = v. In particular, the
subgroups (Λi)i∈N of Zd are pairwise H -equivalent w.r.t. v so by Lemma 4.2, there
exists a H -path E1,i, ...,Eri,i labeled ei, ..., ei+1 that connects Vi to Vi+1. Denoting by
G the resulting H -graph, Lemma 3.14 delivers a H -graph F

• that contains (Ki)i∈N as disjoint subgraphs;

• such that the quotient F/⊔i∈N Ki is a forest.

Hence, by Lemma 3.11, there exists a H -action β that extends βi for every i ∈ N and
whose H -graph is F . This proves that the conjugacy class of G which is associated
to β is dense in K(G) ∩Ph−1H ,v(πv(Λ)).

Now we study the topology of the pieces of the partition

Sub(G) = ⊔
Λ≤Zd

Ph−1H ,v(πv(Λ)).

Proposition 6.6. For any Λ0 ≤ Zd:

1. if Λ0 has finite index in Zd, then the fiber Ph−1H ,v(πv(Λ0)) is open;

2. otherwise, Ph−1H ,v(πv(Λ0)) is an Fσ;

3. Ph−1H ,v(πv({Λ0})) is closed iff {Λ1 ≤ Zd ∣ Λ1 ≃ Λ0} is finite.

Remark 6.7. In particular, Ph−1H ,v(πv({0})) is closed.

Remark 6.8. If the image of the modular homomorphism is trivial, then the third
item of Lemma 6.6 together with Lemma 5.6 implies that all pieces are closed.

Proof of Proposition 6.6. Notice that we have

Ph−1H ,v(πv(Λ0)) = ⋃
Λ1≃Λ0

{H ≤ G ∣H ∩Gv = Λ1} .
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By Lemma 2.1, this is a Fσ as a countable union of closed subsets of Sub(G). Hence,
we get the second point.

If Λ0 has finite index in Zd, this is an open subset of Sub(G) as a union of open
sets by Lemma 2.1. This proves the first point.

If {Λ1 ≤ Zd ∣ Λ1 ≃ Λ0} is finite, then Ph−1H ,v(πv(Λ0)) is closed as a finite union
of closed subsets by Lemma 2.1. Otherwise, there exists a sequence of subgroups
(Λn)n∈N ∈ (π−1v (πv(Λ0)))N that converges to a subgroup Λ ≤ Zd whose rank is strictly
less than rk(Λ0). By a straightforward induction using Corollary 4.3, there exists a
H -path E1, ...,En, ... such that: for every n ∈ N, there exists kn ∈ N such that s (Ekn)
is labeled (Λn, v). Thus, by Lemma 3.14, there exists a saturated H -graph which is
a forest that contains E1, ...,En, ... as a sub-H -graph. Hence by Lemma 3.11, there
exists a subgroup H ≤ G and elements gn ∈ G such that gnHg−1n ∩Gv = Λn for every
n ∈ N. Up to extracting, the sequence gnHg−1n converges to a subgroup K ≤ G that
satisfies K ∩Gv = Λ. In particular, as the rank is constant on the fibers of πv, one
has K ∉ Ph−1H ,v(πv(Λ)), which proves that Ph−1H ,v(πv(Λ0)) is not closed.

Remark 6.9. The definition of the equivalence relation ≃ still makes sense if the
graph H is infinite and the same proof extends to the class of groups that act
(non necessarily cocompactly) on an oriented tree with vertex and edge stabilizers
isomorphic to Zd. In the case of a non-cocompact action on the Bass-Serre tree, we
thus obtain a dynamical partition of the whole set of subgroups by Remark 5.3.

6.2 Case where G = Zd ⋊ Fr

Now we assume that H consists of a collection of r loops e1, ..., er based at a single
vertex v such that, for every i ∈ J1, rK, the label (Ai,Bi) of ei satisfies: Ai ∈ GLd(Z)
and Bi ∈ GLd(Z). Denoting by

Pi ∶= AiB
−1
i ,

the group G is isomorphic to the semidirect product of Gv = Zd with the free group
Fr = ⟨a1, ..., ar⟩ of rank r, where the generator ai acts on Zd by multiplication by
Pi. Let us denote by ρ ∶ Fr → GLd(Z) the morphism that satisfies ρ(ai) = Pi for
every i ∈ J1, rK and by Γ = ρ(Fr). Observe that this Fr-action induces an Fr-action
on Sub(Gv) defined as follows: for any subgroup Λ ≤ Gv and any γ ∈ Fr:

γ ⋅Λ = ρ(γ)Λ

= (u, γ)Λ(u, γ)−1 ∀u ∈ Zd

(when identifying Gv with Gv × {1} in Gv ⋊ Fr).
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Remark 6.10. If Λ is a finite index subgroup of Gv, then for every γ ∈ Fr, one has
∣det(ρ(γ)Λ)∣ = ∣det(Λ)∣. As there exist only finitely many lattices of Zd of a given
determinant, the orbit Fr ⋅Λ = {ρ(γ)Λ ∣ γ ∈ Fr} is finite.

Let us denote by π ∶ Zd ⋊ Fr → Fr the projection.
Our goal is to decompose the perfect kernel of G into countably many pieces

on which the action by conjugation contains a dense orbit. Let us recall that (by
Theorem 5.2), one has

K(G) = {H ≤ G ∣ π(H) ∈ Sub[∞](Fr)}.

Notice that, as the subgroup Gv is normal, denoting by Conj(Gv) the set of classes
for the action of G on Sub(Gv) by conjugation, the following partition

Sub(G) = ⊔
C ∈Conj(Gv)

{H ≤ G ∣H ∩Gv ∈ C } (6.11)

is G-invariant. Denoting by C = {ρ(γ)Λ0, γ ∈ Fr} for some Λ0 ≤ Gv, we get that

{H ≤ G ∣H ∩Gv ∈ C } = ⋃
γ∈Fr

{H ≤ G ∣H ∩Gv = ρ(γ)Λ0}.

Notice that ∣det ∣ is constant on C for every C ∈ Conj(Gv). In particular, there are
infinitely many pieces in the decomposition (6.11).

This partition leads to a G-invariant partition of the perfect kernel into countably
many pieces

K(G) = ⊔
C ∈Conj(Gv)

{H ∈ K(G) ∣H ∩Gv ∈ C }.

Notice that this is exactly the decomposition (6.4) we obtained in the previous case
of a GBS group G which is not Zd-by-free: two subgroups Λ0, Λ1 of Gv can arise as
the labels of two vertices of some connected H -graph iff there exists some γ ∈ Fr such
that ρ(γ)Λ0 = Λ1, or equivalently, iff Λ0 and Λ1 belong to the same orbit under the G-
conjugation. However, the proof of Theorem 6.5 does not extend to our new setting,
because the relation ≃ need not be transitive anymore. This difficulty turns out to
be a real obstruction: the conjugation action need not be topologically transitive on
each piece in our new setting. This comes from the fact that the skeleton of the
H -graph of a subgroup of G is related to its intersection with the vertex group Gv

as follows:

Lemma 6.12. Let H be a subgroup of G. Then π(H) ≤ StabFr(H ∩Gv).
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Proof. Let γ ∈ π(H). There exists u ∈ Zd such that (u, γ) ∈H. For any (v,1) ∈H∩Gv,
one has

(u, γ)(v,1)(u, γ)−1 = (ρ(γ)(v),1)

∈H

which implies that ρ(γ)(v) ∈ H ∩ Gv. Consequently, ρ(γ)(H ∩ Gv) = H ∩ Gv thus
γ ∈ StabFr(H ∩Gv). Hence, π(H) ≤ StabFr(H ∩Gv).

Let us fix C ∈ Conj(Gv). Lemma 6.12 allows us to decompose

PC ∶ = {H ∈ K(G) ∣H ∩Gv ∈ C }

= {H ∈ K(G) ∣H ∩Gv ∈ C and π(H) ∈ K(StabFr(H ∩Gv))}

⊔{H ∈ K(G) ∣H ∩Gv ∈ C and π(H) ∉ K(StabFr(H ∩Gv))},

each of these two pieces being invariant under G-conjugation. Notice that the second
piece

DC = {H ∈ K(G) ∣H ∩Gv ∈ C and π(H) ∉ K(StabFr(H ∩Gv))}

of this last decomposition is always countable and open for the induced topology on
PC .

Remark 6.13. More precisely, two cases can occur:

• If StabFr(Λ0) is infinitely generated or StabFr(Λ0) has finite index in Fr (for
some, equivalently for all Λ0 ∈ C ), then DC is empty;

• Otherwise, it consists of

{H ∈ K(G) ∣H ∩Gv ∈ C and π(H) ∉ Sub[∞](StabFr(H ∩Gv))}

if StabFr(Λ0) is not infinite cyclic, and of PC otherwize.

Lemma 6.14. For every C ∈ Conj(Gv), there exists a dense orbit in

PC ∖DC = {H ∈ K(G) ∣H ∩Gv ∈ C and π(H) ∈ K(StabFr(H ∩Gv))}.

To prove this lemma we will use the formalism of H -graphs. Notice that in this
context, the H -graph G of a subgroup H ≤ G will be uniquely determined by π(H)
and H ∩ Gv. It is the Schreier graph of the subgroup π(H) ≤ Fr (with respect to
the generating set {a1, ..., ar}) whose labels are defined as follows: if V0 is a vertex
labeled Λ0 ∶=H ∩Gv, and V is any other vertex of G, then, denoting by E1, ...,Es an
edge path labeled f1, ..., fs that connects V0 to V , the Transfer Equation 3 tells us
that the label of V is the subgroup (Mfs,tM

−1
fs,s

. . .Mf1,tM
−1
f1,s
)Λ0 of Zd. In particular,

the set of labels of the vertices of G is exactly {ρ(γ)Λ0, γ ∈ Fr}.
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Proof. Let C ∈ Conj(Gv) and let Λ0 ∈ C . Let us denote by Γ0 ∶= StabFr(Γ0). Let
(Hi)i∈N∗ ∈ (PC ∖ DC )N be the sequence of finitely generated subgroups such that
Hi ∩Gv = Λ0 for every i ∈ N∗. For every i ∈ N∗, let αi be the saturated H -preaction
associated to Hi, and let Gi be its H -graph. Let βi be a subpreaction of αi that
corresponds to the same subgroup as αi and whose H -graph Ki is a finite subgraph
of Gi that contains Vi (legit, because Hi is finitely generated). Let Si be the graph
obtained by forgetting the labels of the vertices of Gi, pointed at the vertex Vi. The
graph Si is the Schreier graph of π(Hi) with respect to the generating set {a1, ...ar}
of Fr. As π(Hi) is a subgroup of Γ0, denoting by S0 the Schreier graph of Γ0, the
graph Si is in fact a covering of the graph S0 (for every i ∈ N∗). As π(Hi) belongs to
K(Γ0), one has the following dichotomy:

• either Γ0 is not finitely generated;

• or Γ0 is finitely generated and the covering map Si → S0 has infinite degree for
every i ∈ N∗.

Let us define Fi as the subgraph of Si obtained by forgetting the labels of the subgraph
Ki og Gi. In both cases, Remark 2.3 provides a covering map S → S0 such that S
contains (Fi)i∈N∗ as disjoint subgraphs and such that the quotient S/⊔i∈N∗ Fi is a
tree. This covering corresponds to an infinite index subgroup Γ ∈ Sub[∞](Γ0). After
labeling the vertex V1 by the subgroup Λ0 (and all the other vertices of S so that the
Transfer Equation 3 is satisfied), we obtain an infinite H -graph F :

• that contains (Ki)i∈N∗ as disjoint subgraphs;

• such that the quotient F/⊔i∈N∗Ki is a tree.

Thus, by Lemma 3.11, there exists a saturated H -preaction γ that extends βi for
every i ∈ N∗ and whose H -graph F is infinite. Denoting by L a subgroup of G
associated to γ, as the H -graph of L contains a vertex labeled Λ0, one has L∩Gv ∈ C
and as the covering map S → S0 has infinite degree, one also has π(L) ∈ Sub[∞](Fr)∩
K(StabFr(L ∩Gv)), which concludes the proof.

Hence we obtain the following decomposition of K(G):

Theorem 6.15. There exists a G-invariant countable partition

K(G) = ⊔
C ∈Conj(Gv)

PC

into Fσ-subsets of K(G), and, for every C ∈ Conj(Gv), a countable G-invariant open
subset DC ⊆ PC (for the induced topology on PC ) such there exists a dense orbit in
PC ∖DC . Moreover, denoting by C = {ρ(γ)Λ0, γ ∈ Fr} for some Λ0 ≤ Zd:
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1. if Λ0 has finite index in Zd, then PC is a clopen set;

2. PC is closed iff StabFr(Λ0) has finite index in Fr;

3. if StabFr(Λ0) either is infinitely generated or has finite index in Fr, then DC = ∅.

Proof. The existence of a dense orbit in PC ∖ DC is provided by Lemma 6.14. The
fact that PC is an Fσ results from Lemma 2.1.

Now let us turn to the proof of the second item. Let Λ0 ≤ Zd and let C be the
G-conjugacy class of Λ0. The fact that StabFr(Λ0) has finite index in Fr is equivalent
to the finiteness of the orbit {ρ(g)Λ0, g ∈ G}. In particular, StabFr(Λ0) has finite
index in Fr, then

PC = ⋃
g∈Fr

{H ∈ K(G) ∣H ∩Gv = ρ(g)Λ0}

is closed as a finite union of closed sets by Lemma 2.1. Conversely, let us assume that
the set {ρ(g)Λ0, g ∈ G} is infinite. In particular, there exists a sequence (gn)n∈N ∈ FN

r

such that ρ(gn)Λ0 converges to a subgroup Λ ≤ Gv of rank strictly less than the one
of Λ0. In particular, ρ(gn)Λ0 ∈ PC for every n, but Λ ∉ PC which implies that PC is
not closed.

The third item results from Remark 6.13.

Remark 6.16. Again, we didn’t use the cocompactness of the action of G on its
Bass-Serre tree. In other words, Theorem 6.15 extends to the case where r = ∞.

To conclude, we give an explicit example where the set DC is non-empty, and
where the conjugation action has no dense orbit for the induced topology on PC :

Example 6.17. Let P1 and P2 be two matrices that generate a free subgroup of

SL2(Z); for instance, P1 = (
1 2
0 1
) and P2 = (

1 0
2 1
). Let G be the semidirect product

Z2 ⋊ F2, where, denoting by {a1, a2} a basis of F2, the generator ai acts by multipli-
cation by Pi on Z2.

Let Λ0 = (
1
0
)Z. Then, any matrix of SL2(Z) stabilizing the subgroup Λ0 of Z2 is a

power of (
1 1
0 1
). As the morphism ρ ∶

F2 → SL2(Z)
a1 ↦ P1

a2 ↦ P2

is injective, the stabilizer

StabF2(Λ0) is also infinite cyclic (in fact, it is the subgroup generated by a1). In
particular, its perfect kernel is empty, so denoting by C ∶= F2 ⋅ Λ0 the G-conjugacy
class of Λ0, one has

DC = PC .
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Let us show that there is no dense orbit for the conjugation action G ↷ PC . For
any v ∈ Z2, let us consider the following invariant subsets

Uv = {H ∈ PC ∣ ∃g ∈ G,g(v, a1)g
−1 ∈H}.

The set Uv is open as a union of clopen sets:

Uv = ⋃
g∈G
{H ∈ PC ∣ g(v, a1)g

−1 ∈H}.

Claim 6.18. For every v,w ∈ Z2 such that v −w ∉ Λ0, one has Uv ∩Uw = ∅.

As the quotient Z2/Λ0 is infinite, this will imply the existence of an infinite count-
able set of pairwise disjoint open subsets, contradicting the existence of a dense orbit.

Proof of the claim. By contraposition, let v,w ∈ Z2 such that Uv∩Uw ≠ ∅. LetH ∈ PC

and g ∈ G such that

• (v, a1) ∈H;

• g(w,a1)g−1 ∈H.

As H ∈ PC , there exists γ ∈ F2 such that H ∩ Z2 = ρ(γ)Λ0. Thus, StabF2(H ∩ Z2) =
γ⟨a1⟩γ−1. Denoting by g = (u0, γ0), one deduces that a1, γ0a1γ−10 ∈ γ⟨a1⟩γ

−1. This
forces γ and γ0 to belong to ⟨a1⟩. In particular, H ∩ Z2 = Λ0. Let k ∈ Z such that
γ0 = ak1. One has

g(w,a1)g
−1(v, a1)

−1 = (u0, a
k
1) (w,a1) (u0, a

k
1)
−1
(v, a1)

−1

= (u0 + ρ(a1)
kw,ak+11 ) (−ρ(a1)

−ku0, a
−k
1 ) (v, a1)

−1

= (u0 + ρ(a1)
kw − ρ(a1)u0, a1) (−ρ(a1)

−1v, a−11 )

= (u0 − P1u0 + P
k
1 w − v,1)

∈ (H ∩Z2) × {1}

= Λ0 × {1}.

Thus, u0 − P1u0 + P k
1 w − v ∈ Λ0. Notice that (I2 − P1)Z2 ⊆ Λ0. Thus,

u0 − P1u0 ∈ Λ0,

and

P k
1 w = w +

k−1
∑
i=0

P i
1(P1w −w)

∈ w +Λ0,

which implies that w − v ∈ Λ0.
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