Exercices sur le chapitre 2

- 1. (i) Faire la liste de tous les revêtements de degré 2 du bouquet de deux cercles. Lesquels sont galoisiens?
 - (ii) Faire la liste de tous les revêtements de degré 3 du bouquet de deux cercles. Lesquels sont galoisiens?
 - (iii) Montrer qu'un graphe fini connexe \mathcal{G} possédant s sommets et a arêtes est homotope au bouquet de 1-s+a cercles. En particulier, le groupe fondamental d'un graphe est un groupe libre.
 - (iv) Soient \mathcal{G}_1 et \mathcal{G}_2 deux graphes finis connexes tels qu'il existe un revêtement $p:\mathcal{G}_1\to\mathcal{G}_2$. Donner le nombre de sommets et d'arêtes de \mathcal{G}_1 en fonction de \mathcal{G}_2 .
 - (v) Pour tout $k \in \mathbb{N}$, construire un revêtement galoisien d'un espace de groupe fondamental \mathcal{F}_k sur le bouquet de deux cercles.
- **2.** Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe propre non constante.
 - (i) Montrer que les fibres de f sont finies.
 - (ii) Montrer que $f: \mathbb{C} \setminus f'^{-1}(\{0\}) \to f(\mathbb{C} \setminus f'^{-1}(\{0\}))$ est un revêtement.
 - (iii) Montrer que les polynômes non constants satisfont les hypothèses de l'énoncé et calculer les degrés des revêtements associés.
- **3.** On définit la boucle d'oreille hawaienne \mathcal{B} comme la réunion des cercles de \mathbb{R}^2 de centres $(\frac{1}{n},0)$ et de rayons $\frac{1}{n}$ (pour $n \in \mathbb{N}^*$).
 - (i) Montrer que \mathcal{B} est connexe par arcs et localement connexe par arcs.
 - (ii) Montrer que \mathcal{B} n'est pas localement simplement connexe.
- **4.** Le but de cet exercice est de classifier tous les revêtements connexes du cercle. Soit $p: X \to \mathbb{S}^1$ un revêtement avec X un espace topologique connexe.
 - (i) Montrer que pour tout $x_0 \in X$ et t_0 vérifiant $\exp(2i\pi t_0) = p(x_0)$ il existe une unique application continue $f_{x_0} : \mathbb{R} \to X$ telle que $p \circ f_{x_0}(t) = \exp(2i\pi t)$ pour tout $t \in \mathbb{R}$ et $f_{x_0}(t_0) = x_0$ (on pourra utiliser le théorème de relèvement des homotopies).
 - (ii) Montrer que f_x est soit injective, soit périodique. Dans ce dernier cas, montrer que f_x possède une période minimale $d \in \mathbb{N}^*$.

- (iii) Justifier que f_x est une application ouverte.
- (iv) Montrer que pour tous $x, y \in X$, les images de f_x et f_y sont soit disjointes soit égales. En déduire que f_{x_0} est surjective pour un certain $x_0 \in X$.
- (v) Conclure dans le cas où f_{x_0} est injective que p est isomorphe au revêtement $\exp: \mathbb{R} \to \mathbb{S}^1$.
- (vi) Montrer que p est isomorphe au revêtement de \mathbb{S}^1 sur lui-même donné par $z \to z^d$ si f_{x_0} est périodique de période minimale d.